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1. Introduction

This report describes the mathematical analysis on
which the program modifications to Fotonap are based. Also
included in the report is some program documentation and a
description of the final test runs used in the program check
out. The program modifications may be subdivided into 7 separate
groups, 6 of which are mathematical in nature and therefore
described here. To deal with the added capabilities, the set
of control cards used to run Fotonap has been augmented. A new
Fotonap user's guide has been issued as a separate document.
Program changes based on the analysis given in this report have
been implemented and checked out on both the CDC 6400 and the
Univac 1108 versions of Fotonap.

The most fundamental change to Fotonap is the inclusion
of a Kalman filter and a fixed lag smoother. The smoother
formulation is considerably more complicated than that of the
filter. This applies both to the mathematical analysis and to
the program. The core storage requirements are also much higher.
Tue analysis is based on Gelb (1977), though checking back to
the original source (Meditch, 1969) one of the required equations
was found to be in error. The formulation implemented in Fotonap,
however, differs slightly from that given by Meditch (1969).

The Fotonap formulation, though mathematically equivalent,
requires slightly less core storage. The filter and smoother

analysis is given in Section 2. The description of the satellite
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drag coefficient and the GPS user clock as random variables is
based on some equations given by Dr. Ballew (1977) of DMA Aero-
space Center, St. Louis. This is given in Sections 3 and 4.

Formulae for calculating the state transition matrices
(required by the filter/smoother) from those computed by the
regular Fotonap integrator are given in Section 5.

A brief description of the Global Positioning System
(GPS) is given in Section 6. A derivation of all the equations
required for handling GPS measurements is also contained within
this section. A considerable amount of effort was spent on
developing an efficient scheme for selecting GPS satellites when
running the program in a simulation mode. It had originally been
thought possible to use the Morduch (1976) method, but that was
developed for somewhat different requirements. The rather lengthy
analysis is given in Appendix E.

Section 7 gives the mathematical analysis for drag
segmentation, which is a scheme whereby the satellite drag
coefficient changes discretely at fixed (by the program user)
intervals of time. A novel (optional) feature of the implemented
scheme is that the coefficients may be mutually constrained, the
strength of the constraints being determined by the program user.
(Very strong constraints effectively eliminate the distinction
between the segments. This feature was utilized in the program
check-out.)

A new atmospheric model, the Lockheed-Jacchia Atmosphere
has been added to Fotonap. The program is a modification of one

supplied by Mr. George Stentz (1978) of DMA Aerospace Center. A
-2-




description of the formulae used is given in Section 8. Section
9 of the report gives a general description of all program changes.
The changes to the Fotonap user's guide are indicated in Section
10. Section 11, the last section of the main text, describes
some of the test runs made in checking out the new version of
Fotonap.

A set of 7 appendices are also included in the report.
The first 5 (A through E) give detailed derivations of some of
the formulae used in the main text. Appendices F and G updates
some of the previous program documentation (Hartwell, 1975)
relating to Fotonap.

Fotonap is sometimes spelled Photonap in this report.

It is the same program.




2.

2.1

Mathematical Analysis For Fixed Lag Smoother

Definition of Terms

E Operator denoting 'Expected value of'
A-! Inverse of matrix A

AT

Transpose of matrix A
AT = @t = @hH
Covy Covariance of y

Cov y = E(y-Ey) (y-Ey)"
x(k,n) Estimate of parameter vector at time-point

k after processing measurements at time-
points 1 through n.

x1(k) = x(k,k)

x2(k) = x(k+1,k)

xS(k) = x(1,k) if k<L

= x(k-L,k) if k > L

L Lag constant

b(k,n) Estimate of parameter vector at time-point
k after processing measurements at time-
points n through N and n 2 k

xT(k) True parameter vector at time-point k

%(k,n) = x(k,n)-xT(k)

b(k,n) = b(k,n)-xT (k)

P(k,n) Estimated covariance of %(k,n)

P1(k) = P(k,k)
P2(k) = P(k+l,k)
PS(k) = P(l,k) if k< L

P(k-L,k) if k > L

st




B(k,n)
M@, k)

W(k)

A(k) =
C(,k)
C1(k)

Cc2(k)
dP (k)

dx (k)

AP (k)

Ax (k)

G (k)
H(k)

Z(k)
r

R =

Estimated covariance of S(k,n)

State transition matrix relating the
parameter vectors (system states) at time-
points j and k.

M(k,j) = M(§.k)!?
State noise. See equations (2.4.1) and (2.4.2)
Q(k) = E W(k)W(k) T

P (K, K)M(k+1,k) TP (k+1,k) "~}

Exr

AGAGHL) ... .A(k) [Defined only for k > jl

C(h,k), where hzl (mod L)
and k-L<hgk

C(k+1-L,k) [Defined only for k > L]
Change in covariance of parameter estimate
at timefpoint k [See Equations (2.2.6) and
(2.2.7)

Change in parameter estimate at time-point
k [See equation (2.2.13) and 2.2.14)

P(k-L,k) - P(k-L,k-L)
PS(k) - P1l(k-L)
x(k-L,k) - x(k-L,k-L)
xS(k) - x1(k-L)

Kalman gain matrix [See equation (2.2.8)]

Matrix of partial derivatives of measurements

with respect to parameters
Vector of measurements

Measurement noise
T

F(k) = P(k,N) - P(k,N+1)
f(k) = x(k,N+1) - x(k,n)




2.2

Filter and Smoother Equations

The following formulae will be derived.
P(k+1,K) = M(k+1,Kk)P(k,k)MCk+1,k) T+Q(k),

ACK) = P(k,k)M(k+L,Kk) TP (k+1,k)"?
C(j.k) = C(k,k-1)A(k)

C(j sk-l)

A(G-1)7'C(3-1,k-1)

c(.ji- I, the identity matrix
P(k+1,k+1) = P(k+1l,k) - dP(k+l)

dP(k+1) = G(k+1)H(k+1)P(k+1l,k)

G(k+l) = P(k+1,k)H(k+1) T [R(k+1) +
+ H(kH1)P (k1 K H(HD) T

P(l,k+1) = P(L,k) - C(1,k)dP(k+1)C(L,k)T
P(k+l-L,k+1) = P(k+l-L,k-L) +
+ A(k-L)~ AP (k)A(k-L)"T

- C(k+1-L,k)dP (k+1)C(k+1-L k)T

AP(k) = P(k-L,k) - P(k-L,k-L)
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x(k+1l,k) = M(k+l,k)x(k,k) (2.2.12)
x(k+1,k+1) = x(k+l,k) + dx(k+1) (2.2.13)
dx (k+1) = G(k+1)[Z(k+1)~H(k+1)x(k+1,k)] (2.2.14)
x(1l,k+1) = x(1,k) + C(1,k) dx(k+l) (2.2.15)
x(k+1-L,k+1) = x(k+1-L,k-L) + A(k-L) 'ax(k)

+ C(k+1-L,k) dx(k+1) (2.2.16)
ax(k) = x(k-L,k) - x(k-L,k-L) (2.2.17)

The significance of the most important of the above

equations may be described as follows:

Equations (2.2.1) and (2.2.12).

Covariance and parameter

vector propagation from time-point k+l in the absence of any

measurements passed time-point k.

Equations (2.2.6) and (2.2.13).

Covariance and parameter

vector update at time-point k+1l, after the measurements at time-

point k+l have been processed.

Equations (2.2.9) and (2.2.15).

[Fixed point smoother]

Estimated covariance and vector at the initial time-point after

the measurements at the first k+l time-points have been processed.




Equations (2.2.10) and (2.2.16). (Fixed lag smoother]
Estimated covariance and vector L time intervals prior to latest
measurement point. As can be seen from equation (2.2.11) and
(2.2.17) the smoother estimate for the previous time-point is
always needed in the calculations. The fixed point smoother

is used to get such an estimate for the initial time-point.




2.3 Change in notation to facilitate programming.

The following definitions are introduced

P1(k) = P(k,k)
P2(k) = P(k+l,k)
PS(k) = P(1,k) if k<L
PS(k) = P(k-L,k) if k > L
Cl(k) = C(h,k), where
h =1 (mod L)
and
k-L < h <k
C2(k) = C(k+1l-L,k)
x1(k) = x(k,k)
x2(k) = x(k+1,k)
xS(k) = x(1,k) if k< L
xS(k) = x(k-L,k) if k > L

Equations (2.2.1) through (2.2.17) may now be rewritten
in the new notation. Since there is no risk of confusion, the

indices for Q, M, G, H, R, dP, AP, dx and Ax will be dropped. We

find that

P2(k) = M PL(K)MT + Q
A(k) = P1(k)MTP2 (k)"

Cl(k) = A(k) for k = 1 (mod L)
Cl(k) = Cl(k-1)A(k) for k £ 1 (mod L)

-9-
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C2(k)
C2(k)

[Note that repeated use of equation (2.3.17) for the

computation of C2 will result in numerical inaccuracy.

C2 is, therefore, reset every L cycles using equation

(2.3.18)]

P1(k+l) = P2(k) - dP (2.3
dP = GH P2(k) (2.3
G = PHY[R + H P2(k) HT] ' (2.3.
PS(k+l) = PS(k) - Cl(k) dP Cl(k)T for k<L  (2.3.

PS(k+l) = P2(k-L) + A(k-L) " 'AP A(k-L)°T
- C2(k) dP C2(k)T for k >L  (2.3.
AP = PS(k) - P1(k-L) (2.3
x2(k) =Mx1(k) 2.3
x1(k+1) = x2(k) + dx (2.3
-10-

A(k-L)"! C2(k~1)A(k) for k # 0 (mod L) (2.3.
Cl(k) for k = 0 (mod L) (2.3.

17)
18)

.19)

.20)

21)

22)

23)

.24)

.25)

. 26)




dx = G[Z - H x2(k)] (2.3.27)

xS(k+1) = xS(k) + Cl(k)dx, for k< L (2.3.28)
xS(k+l) = x2(k-L) + A(k-L) " 'Ax + C2(k)dx

for k > L (2.3.29)
Ax = xS(k) - x1l(k-L) (2.3.30)
It can be seen from the above that variables Pl, P2,

A, x1 and x2 require L storage blocks each, but for the remaining
quantities only the last computed value need be maintained in

computer memory.

-11-




2.4 Derivation of equations

The state-transition matrix M(k+l,k) relates the
true parameter vector xT(k) at time-point k to the corresponding

vector at time-point k+1 through the equation
xT(k+1l) = M(k+1l,k)xT(k) + W(k), (2.4.1)
where the term W(k) arises due to our lack of knowledge of the

system. W(k) is thus unknown to us. However, we shall assume

that
EW(K) = 0, EWK)W(K) T = Q(k) (2.4.2)

and W(k) and W(m) are assumed to be uncorrelated if k # m. For

the forward prediction formula we obtain a similar formula
x(k+1l,k) = M(k+l,k)x(k,k) (2.4.3)

[Same as equation 2.2.12.]

whence the error X must satisfy,
% (k+1l,k) = M(k+l,k)%(k,k) - W(k) (2.4.4)

The covariance propagation equation (2.2.1) follows from the

above and equation (2.4.2).

-12-




The backward prediction formula corresponding to equation

(2.4.3) is given by
b(k,k+1l) = M(k,k+1)b(k+1,k+1) (2.4.5)

with the error b being given by
b(k,k+1l) = M(k,k+1) [b(k+l,k+1) + W(k)] (2.4.6)

From the above and equation (2.4.2) it follows that the covariance

is given by

B(k,k+1) = M(k,k+1) [B(k+l,k+1) + Q(k)]M(k,k+1)T (2.4.7)

whence

B(k+1,k+1) = M(k+1l,Kk)B(k,k+1)M(k+1,k)T - Q(k) (2.4.8)

Adding equations (2.2.1) and (2.4.8) we obtain

P(k+1,k)+B(k+1,k+1) = M(k+1,k) [P(k,k)+B(k,k+1) | M(k+L, k)T
(2.4.9)

Since the forward parameter estimate, x(k,k), is based
on measurements 1 through k, and the backward estimate, b(k,k+l),
is based on measurements k+l through N, it follows that the two
estimates are statistically independent. We may thuc use formulae

(B.1) and (B.2) in Appendix B to get the smoothed solution at
time-point k:

-13-




x(k,N) = P(k,N)[P(k,k) 'x(k,k)+B(k,k+1) " 'b(k,k+1)], (2.4.10)
P(k,N) = [P(k,k)~'+ B(k,k+1)~1]"’ (2.4.11)

The above argument also applies to estimates x(k,k-1)

and b(k,k), which may be combined to yield formulae similar to

(2.4.10) and (2.4.11). At time-point k+l we thus obtain

x(k+1,N) = P(k+1,N) [P(k+1l,k) ™ 'x(k+1,k)+B(k+1l,k+1)"?
b(k+1,k+1)], (2.4.12)

P(k+1,N) = [P(k+1,k)” 4B (k+l,k+1)~}] " (2.4.13)
From the above equation we deduce that

P(k+1,N) = B(k+l,k+1)[P(k+1l,k) + B(k+l,k+1)]  P(k+l,k)
= P(k+1,k) - P(k+l,k)[P(k+l,k) + B(k+l,k+1)] 'P(k+l,k)

From the above and equation (2.4.9) we obtain

P(k+1,N) = P(k+l,k)
-P(k+1,k)M(k+1,k)"T[P(k,k) + B(k,k+1)] '
M(k+1,k) " 'P (k+1,k) (2.4.14)

Since by equation (2.2.2)

P(k+1,k)M(k+1,k)"T = A(k) 'P(k,k). (2.4.15)

“14-




it follows that

* P(k+1,N) = P(k+l,k)
-A(K)"'P(k,k) [P(k,k) + B(k,k+1)] 'P(k,K)AC(K)"T (2

From equation (2.4.11) we find that

P(k,N) = P(k,k)[P(k,k) + B(k,k+1)] 'B(k, k+1)

= P(k,k) - P(k,k)[P(k,k) +B(k,k+1)] P(k, k)

From the above and equation (2.4.16) we deduce that

P(k+1,N) = P(k+1l,k) + A(k) '[P(k,N)-P(k,k))A(k)"T

(2.

Let

F(k) = P(k,N) - P(k,N+1) (2
It then follows from equation.(2.4.18) that

F(k+l) = A(k)~! F(k)A(k)"T (2
and hence that

F(k) = A(k) F(k+l) A(K)T - (2
From the above we deduce that

F(k) = A(K)ACK+L).. A(N)F(N+L)A(N)T. . . A(k)T (2.
For j< k, Define C(j,k) by

C(i.k) = A(G)AGHL). . .Ak) (2.

-15-
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It can easily be seen that the above definition is consistent
with equations (2.2.3) through (2.2.5). From equations (2.4.22)
and (2.4.23) we obtain

F(k) = C(k,N)F(N+1) C(k,N)T (2.4.24)
It follows from equations (2.4.19) and (2.4.24) that

P(k,N+1) = P(k,N)-C(k,N)[P(N+1,N)-P (N+1,N+1)]
cek,N)T (2.4.25)

Replacing k by 1 and N by k in the above equation we obtain

P(1,k+1) = P(1,k) - C(1,k)dP(k+1)C(1l,k)T~ (2.4.26)
where

dP(k+1) = P(k+l,k) - P(k+l,k+1) (2.4.27)
The derivation of equations (2.2.6) through (2.2.8) is given in
Appendix C. Since equations (2.4.27) and (2.2.6) are equivalent
it follows that equations (2.4.26) and (2.2.9) are identical.

In order to derive equation (2.2.10) we first substitute
k-L for k and k for N in equation (2.4.18) thus obtaining

P(k-1-L,k)=P(k+1-L,k-L)+A(k-L) " 'AP(k)A(k-L)"T (2.4.28)

where AP(k) is given by equation (2.2.11)
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In equation (2.4.25) we substitute k+1-L for k and k
for N:

P(k+1-L,k+1)=P (k+1-L,k)-C(k+1-L,k)dP (k+1)C(k+1-L,k)T (2.4.29)

where §P(k+l) is defined by equation (2.4.27). Equations

(2.4.28) and (2.4.29) may be seen to be equivalent to equation
This completes the derivation of equations (2.2.1)

(2.2.10).
Equations (2.2.13) and (2.2.14) are derived in

through (2.2.12).

Appendix C.
We shall now proceed to derive equations (2.2.15) through

(2.2.17). 1t follows from equations (2.4.12) and (2.4.13) that

x(k+1,N) = b(k+1,k+1)

+ P(k+1,N)P(k+1l,k) ™! [x(k+l,k)-b(k+l,k+1)] (2.4.30)
From the above and equations (2.4.18), (2.4.3) and (2.4.5) we
deduce that
®(k+1,N) = b(k+l,k+1) +[x(k+1,k)-b (k+1,k+1)]
+A(K)“[P(k,N)-P(k,k)]A(K) " TP(k+1,k)"} -
(2.4.31)

M(k+1,k) [x(k,k)-b(k,k+1)]

whence by equation (2.2.2),

x(k+1,N) = x(k+1,k)
+A (k)" [P(k,N)-P(k,k)] P(k,k) ! [x(k,k)-b (k,k+1)],
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x(k+1,N) = x(k+l,k)+A(k)-*{-x(k,k) +
P(k,N) {P(k,k) "} [x(k,k)-b(k,k+1)] + P(k,N) 'b(k,k+1)}},

whence by equations (2.4.11) and (2.4.10)

x(k+1,N) = x(k+l,k)+A(k) ™ '[x(k,N)-x(k, k)] (2.4.32)

Let f£(k) = x(k,N+l) - x(k,N) (2.4.33)
Hence £(k+1) = A(k)™'£(k) (2.4.34)
and £(k) = A(k) A(k+1).. A(N)£(N+1) (2.4.35)

Using equation (2.4.23) we deduce that

f(k) = C(k,N)E(N+1) (2.4.36)
Hence,
x(k,N+1) = x(k,N) + C(k,N)dx(N+1), (2.4.37)
where
dx (N+1) = x(N+1,N+1) - x(N+1,N) (2.4.38)

If in the above two equations we substitute 1 for k and
k for N we obtain equation (2.2.15) and the equivalent of equation
(2.2.13). In order to derive equation (2.2.16) we first substitute

k-L for k and k for N in equation (2.4.32), thus obtaining
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x(k+1-L,k) = x(k+1-L,k-L)

+A (k+L) " 'ax(k), (2.4.39)

where Ax(k) is given by equation (2.2.17). 1In equation (2.4.37)

we substitute k+1-L for k and k for N:

x(k+1-L,k+1) = x(k+1-L,k) + C(k+1-L,k)dx(k+l), (2.4.40)

where dx(k+l) is defined consistently with equation (2.2.13).
It is easily seen that equations (2.4.39) and (2.4.40) may be

combined to yield equation (2.2.16). This completes the derivation

of the filter equations.
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3. Modelling of the Drag Coefficient

The drag coefficient is modelled as a constant plus

a small perturbation xp, which satisfies the differential equation
xp(t) = ~xp(t)/Tp + vp(t), (3.1)

where a dot denotes differentiation with respect to t and vp

is a random variable with
E vp(t) = 0, and (3.2)
E vp(tl)vp(t2) = 8§(t2 - tl) 2Qp/Tp, (3.3)
where §(t) is the Dirac delta function.
Making the substitution
s = t/Tp, (3.4)
and defining
xp(t) = x'(9), (3.5)

where a prime denotes differentiation with respect to s, we

deduce that

x"(s) + x'(s) = Tp vp(t) (3.6)

If further we define v(s) = Tp vp(t) then it follows from

equations (3.2), (3.3) and equation (D.38) in Appendix D that
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Ev(s) = 0, and (3.8)

6 [(sa-sb)Tp]TP 2Q/Tp
2Q §(sa-sb) (3.9)

E v(sa)v(sb)

Comparing equations (3.5) through (3.9) with equations

(D.1) through (D.3) we deduce from equations (D.7) and (D.10)

that
xp(t) = gp xp(to) + hp(t), (3.10)
where
gp = exp[-(t-to)/Tp], (3.11)
Ehp(t) = 0, (3.12)
and
Ehp(t)? = Qp[l - gp?] (3.13)

Equations (3.10) through (3.13) may be seen to correspond
to equations (2.4.1) and (2.4.2). 1In order to interpret Qp and
Tp we note that if t is much greater than t, then gp is negligibly

small. We hence find from equations (3.10) and (3.13) that

Exp(t)? = Qp (3.14)

From equation (D.33) we deduce with the aid of equation (3.4) and
(3.5) that
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E xp(t)xp(t+At) _ exp (-At/Tp) (3.15)
E xp(t)xp(t)

This concludes the description of the modelling of the drag

coefficient.

3.1 Simulation of Drag Coefficients.

Equations (3.10) through (3.13) are used in the simulation
of drag coefficients. hp(t) is chosen as a normally distributed

random variable satisfying equations (3.12) and (3.13).
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4, Modelling of Clock Bias

The clock bias b(t) is modeled as the integral of the
clock bias rate E(t), which itself satisfies the differential

equation

b(t) = - b(t)/Tb + vb(t), (4.1)

where a dot denotes differentiationwith respect to t and vb is

a random variable with

E vb(t) = 0, and (4.2)
E vb(t,)vb(t,) = 6(t, - t,)2 Qb/Th? (4.3)

where §(t) is the Dirac delta function.

Making the substitution

s = t/Tb (4.4)
defining
b(t) = x(s) (4.5)
and denoting differentiation with respect to s by a prime, it

follows that

x"(s) + x'(s) = v(s), (4.6)
where

v(s) = vb(t) Tb? 4.7)
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From equations (4.2), (4.3), (4.7) and (D.38) in Appendix D,

we conclude that

Ev(s) =0 (4.8)
and

E v(s1)v(sz) = 6(s, - 8,) 2 Qb Tb | (4.9

Comparing equations (4.6), (4.8) and (4.9) with equations (D.1)
through (D.3) in Appendix D, we conclude with the aid of equations

(D.6) through (D.12) and (4.4) and (4.5) that

b(t) = b(ty) + (l-gb)b'(t,) + h(t), (4.10)
b'(t) = gb b'(ty) + h' (L), (4.11)

where
gb = exp{(tqs-t)/Tp]. (4.12)

and h(t), h'(t) are random variables satisfying

E h(t) = E h'(t) = 0 (4.13)

E h(t)? = Qb[2(t-te) - Tb(l-gb)(3-gb)] (4.14)

E h'(t)? = Qb Tb(1l-gb?) (4.15)

E h(t)h'(t) = Qb Thb(l-gb)> (4.16)
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From equations (4.15), (4.11) and (4.4) we deduce that for large

values of t

E b(t)? = Qb/Tb (4.17)
From equations (D.33), (D.34), (D.35), (D.3), (4.4), (4.5) and
(4.9) we find that for large valuec of t

E 5g:)5g;+¢g) _
E b(t)b(t)

exp (-At/Tb), (4.18)

E(b(t)-b(t+at)]? = 2Q[at-Tb(l-exp-At/Tb)], (4.19)

If At is small compared with Tb the above equation reduces to

E[b(t) - b(t+at)]? = (Q/Tb) (at)? (4.20)

4.1 Simulation of Clock Bias.

Equations (4.10) through (4.16) are used in the
simulation of clock bias. First h(t) is chosen as a normally
distributed random number satisfying equations (4.13) and (4.14).

Defining a, e, c by

a=E h(t)?, e=Eh'(t)?, ¢ =E h(t)h'(t), (4.21)
h'(t) is then computed as
h'(t) = h(t) c/a + k(t), (4.22)
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where k(t) is another normally distributed random number

satisfying

E k(t) = 0 (4.23) i
and

E k(t)?2 = e - c?/a (4.24)

Since h(t) and k(t) are independently chosen random
variables, it follows that h(t) and h'(t), computed as described

above, will be consistent with equations (4.13) through (4.16).

ixleialiacide




5, The State Transition Matrix and the Linearization of the

Equations of Motion

5.1

Y+y
P+p

b'

¢(t,s)
D(t,s)

M(t,s)
G(t)

n

Definition of terms and linearization of the equations

of motion.

six parameter nominal position-velocity vector
nominal (and constant) drag coefficient
perturbed six parameter position-velocity vector
perturbed drag coefficient

clock bias

clock bias rate

Nine parameter state vector

&7 p, b, b")

F(Y,P),

Differential equation satisfied by nominal
position-velocity vector

F(Y +y, P+ p),

Differential equation satisfied by perturbed
position velocity vector

F(Y,P) + Fy(Y,P)y + Fp(Y,P)p,

Linearized form of equation (5.1.3).
Fy(Y,P) is a 6 x 6 matrix of partial derivatives
and Fp(Y,P) is a 6-vector of partial derivatives

ay(t) /ay(s), 6 X 6 state-transition matrix

dy(t)/aP

where D(s,s) = 0. Vector of partial derivatives
of the 6 parameter state vector with respect to
a constant change in the drag coefficient at time
5.

ax(t)/ax(s), 9 x 9 state-transition matrix

Fy(Y,P), H(t) = Fp(Y,P),

(5.
(5.

(5.

(5.

(5.
(5.

(5.

1.1)
1.2)

1.3)

1.4)

1.5)
1.6)

1.7)

where Y is a function of time but P is a constant (5.1.8)

Epoch Time (start time of integration of nominal orbit)
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5.2 Computational equations for the state transition matrix.

M(t,s) = ¢(t,s) D(t,s) 0 0 (5.2.1)
0T gp o o
T
0 o 1 l-gb
ot o o gb
e .

where 0 is a six dimensional null vector and o is a scalar zero.

¢(t,s) = ¢(t,e)e(s,e) ! (5.2.2)
D(t,s) = D(t,e) - ¢(t,s)D(s,e) (5.2.3)
5.3 Derivation of equations.

The right-hand side of equation (5.2.1) follows from
the definitions of M(t,s), ¢(t,s) and D(t,s) and also from
equations (3.10), (4.10) and (4.11). Equations (5.2.2) and
(5.2.3) remain to be derived. It follows from equations (5.1.2),

(5.1.4) and (5.1.8) that

y(t) = G(t)y(t) + H(E)p(L). (5.3.1)

¢(t,e) is obtained as the solution of the differential equation

o(t,e) = G(t)¢o(t,e) .with ¢(e,e) = I, (5.3.2)
and D(t,e) as the solution of
-28-
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D(t,e) = G(t)D(t,e) + H(t), : (5.3.3)

with D(e,e) = 0 (5.3.4)
We wish to show that
y(t) = ¢(t,s)y(s) + D(t,s)p(s) (5.3.5)

is a solution of equation (5.3.1) and furthermore that in order
that the left and right hand sides of equation (5.3.5) be

consistent,

¢(s,s) = I and D(s,s) = 0 (5.3.6)

Differentiating equation (5.3.5) with respect to t we deduce

‘with the aid of equations (5.2.2), (5.2.3), (5.3.2) and (5.3.3)

that
y(t) = G(t)¢(t,s)y(s) + [G(£)D(t,e) + H(t)
= G(t)¢(t,S)D(S,E)]p(S),
i.e.,
y(t) = G(t)¢(t,8)y(s) + [ G(t)D(t,s) + H(t)]p(s)

G(t) [¢(t,s)y(s) + D(t,s)p(s)]+ H(t)p(s).

With the aid of equation (5.3.5) the above equation

can be seen to reduce to




y(t) = G(t)y(t) + H(t)p(s) (5.3.7)

Equations (5.3.6) can be seen to follow from equations
(5.2.2) and (5.2.3). Equation (5.3.7), however, is not identical
to equation (5.3.1), but it is a good approximation to it pro-
vided that the drag perturbation p changes but little in the time

interval (s,t). This we shall assume to be the case.




6. Simulation of Measurements Involving the Global Positioning
System (GPS)

6.1 Brief Description of GPS

GPS consists of a set of satellites, whose positions

and velocities are known to all users of the system. These
satellites transmit radio signals at fixed intervals. The
clocks of the GPS satellites are extremely accurate. They are
also mutually synchronized. If the user's clock also were
synchronized with the GPS clocks, then the user could calculate
his distance to each GPS satellite (provided of course that
he could see it). Given three distances to three known positions,
the user may then solve a simple geometric problem to obtain his
own position. If the user clock is not very accurate, then the
user may instead process the signal from a fourth satellite to
give similar results.
Specifically, GPS consists of 24 satellites arranged
in 3 rings of 8 equally spaced satellites (see Figures 6.1 and
6.2). Each satellite is in a 12 hour (26610 km radius) circular
? orbit with an orbital inclination of 63 degrees. The longitudes
% of the ascending nodes of the satellite orbits are 0 degrees
g for those in ring 1, 120 degrees for those in ring 2, and 240
3 degrees for those in ring 3. Since the satellites of each ring
are equally spaced the angular distance between them must be
3 45 degrees. For each ring a satellite must thus cross the

equator from South to North every 90 minutes (another satellite
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simultaneously crosses from North to South). The satellites of
the three rings are phased relative to each other such that a
satellite will cross the equator South to North every 30 minutes.
The order is ring 1, ring 2, ring 3, ring 1,.... The three rings
must obviously intersect one another. However, no two satellites
will ever approach each other closer than 10.4 degrees. The
orbital paths intersect each other at a latitude of 44.5 degrees
(North and South). At the point of intersection, satellites of
two different rings approach each other at 101 degrees. The
longitudes of the intersections in the Northern Hemisphere occur
at 30 degrees (1 ascending, 3 descending), 150 degrees (2 ascending,

1 descending) and 270 degrees (3 ascending, 2 descending).

6.2 Cartesian Coordinates of the GPS Satellites

The position of each GPS satellite may be specified
(i) by the longitude 2 of the ascending node of its orbit
(0 degrees for ring 1, 120 degrees for ring 2, 240 degrees for
ring 3), and (ii) by its angular distance w from that node. w

is computed from the formula
W= w, + nAw + &t, (6.2.1)

where w_ equals 0 degrees for ring 1, 30 degrees for ring 2, and

o
15 degrees for ring 3,
Aw equals 45 degrees,

n is the satellite number
(m=20,1,...,7 for each ring),

w = 360 degrees/12 hours, and t is
time from midnight.
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Let p and q be two unit vectors lying in the orbital plane,
P pointing towards the ascending node and q pointing towards

the point of highest latitude. Then

i

P (cos @, sin 2, 0) and (6.2.2)

ot
Il

(-sin © cosi, cosQcosi, sin i), (6.2.3)

where i is the orbital inclination. The satellite position r

is then given by

r=7pcos w+qsinw (6.2.4)

6.3 GPS Measurements and their Partial Derivat.ves

The Cartesian coordinates of each GPS satellite is
given by a formula of the form (6.2.4). To distinguish between
the different satellites we add a subscript. Thus, Ej’
(3 =1, 2, ...24) is defined as the position vector of the j-th
GPS satellite. Simiiarly we define r as the position vector of

the user. The GPS measurement to GPS satellite number j is then

given by

/e e
4 = /er Bl (F; - ) +b, (6.3.1)

where b is a bias term due to a user clock error. We défine the

unit vector vy by

vy = (£ - £)/(d; - b) (6.3.2)
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Differentiating dj with respect to r we obtain

adj/af -V, (6.3.3)

Also

i
[

adj/ab (6.3.4)
The GPS measurement vector (Z(k) in Section 2) is

made up of four measurements of the form (6.3.1). The partial

derivative matrix (H(k) in Section 2) is made up of the corres-

ponding partial derivatives as given by equations (6.3.3) and

(6.3.4).

6.4 GPS Simulations

The problem to be solved in GPS simulations, just as
in real situation scheduling, is how to choose 4 GPS satellites
out of 24 so as to be able to derive the best possible user
position. Since a user satellite has a clear 'horizon', he can
see roughly a hemisphere of GPS satellites. This, on the average,
amounts to 12 satellites. There are 495 different ways to pick
4 out of 12, To find the best 4 it is necessary to test each
combination. To do so at every time point is impractical. The
following is a suboptional but good scheme for the selection

process. (Further details are given in Appendix E.)

6.4.1. Satellite visibility. It is of course necessary

that each selected GPS satellite be visible to the uéer. In order

that the satellite not be visible two criteria must be met
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(i) The satellite must appear below the user's
'horizon', i.e. |

v.-r <0, (6.4.1)

(ii) The satellite to user line of sight must
intersect the Earth, defined for this purpose
as including an atomsphere 100 km above the
surface, i.e.

17 < (GJ.TE) +r? (6.4.2)

where r_ is the radius of the earth as defined
above.

6.4.2., Selection of first satellite. The first

satellite is somewhat arbitrarily chosen as the one that is
highest in the sky (vaE is a maximum). There is no loss of
generality in designating this as satellite number one (j = 1).

6.4.3 Selection of second satellite. It can be

shown (see Appendix E) that the optimal geometric configuration
obtains when the angles between the four lines of sight are all
equal. This is possible only if the angles equal cos~!(-1/3) or
109.5 degrees. The second satellite is therefore chosen such
that

T 1
Ivivj + 7

is a minimum. This satellite is designated satellite number 2
(G =2.

6.4.4 Selection of the third satellite. It is shown

in Appendix E that given two satellites (1 and 2) then the optimal

geometric lines of sight for satellites 3 and 4 must satisfy:
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(1) v; and v, lie in a plane perpendicular
to that defined by v: and va,

(ii) wv3; + v, is diametrically opposite to v, + v,.
(iii) If the angle between v, and v, is 2a, and the
angle between vVv3; and v, is 28, then

cosB = .327 cosa - .765 (6.4.2)

The procedure then is to define two unit vectors uj; and u,
satisfying the above three criteria and then finding the third
satellite such that vgu, where u = u; or u,, is maximized.
This satellite is designated number 3 (j = 3). wu; and u, are

computed as follows:

cos a = »/(1 + vE vy)/2 (6.4.3)

cosB is then computed using equation (6.4.2).

Hence

sin 8 = vY1 - cos?B (6.4.4)

The vector c¢ is defined by

¢ = (v, + v2) cosB/2cosa, (6.4.5)

and the vector e by

-%
e = (Vxsz)SinB[l - (v;r\rz)’] (6.4.6)
Then
u; = c + e and u, = ¢c - e (6.4.7)
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6.4.5 Selection of the fourth satellite. Given 3

satellites the fourth one is selected optimally as follows:
(For derivation of the formulae see Appendix E). Define the

matrix

Ao = [V[, Va2, V3]T . (6.4.8)
Then

AT = [vaavs, viavy, viave]/ [(Viavz)+vs] (6.4.9)

Define the vector d, by

do = [1, 1, 1]T (6.4.10)
Then compute
eo = A3 d,, and egpo = AJT e (6.4.11)

The fourth satellite is then found by minimizing the expression

2 hy eoo ! £+ h} eole, (L+£1F), (6.4.12)
where
h, = (1 - vieg)~! (6.4.13)
and
-T
£ = Agly, (6.4.14)
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FIGURE 6.1

GPS SATELLITE SYSTEM

AS VIEWED FROM A DISTANT POINT AT 30° LATITUDE

ol6
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FIGURE 6.2

GPS SATELLITE SYSTEM

AS VIEWED FROM A DISTANT POINT ABOVE THE NORTH POLE




7. Drag Segments in an Orbital Arc.

In most cases the drag coefficient of an orbital
satellite is a constant. This is true even if the shape of the
satellite is not spherically symmetric, provided that the satellite
presents the same aspect angle along its direction of motion.

In the equations of motion the drag coefficient always appears

as a factor multiplying the atmospheric density. It is thus
possible to compensate for density variations through corresponding
changes in the drag coefficient. This is often done in practice.
The capability to do that has now been added to Photonap. The
program has been modified to include a number of different drag
segments. Each drag coefficient may be constrained either to

some a priori value (absolute constraint) or the coefficients

of contiguous segments may be constrained relative to each other

(relative constraints).

7.1 Partial Derivatives of the State Vector with Respect

to the Drag Coefficients.

Let

Y = F(Y,P,), (7.1)

denote the differential equation governing the satellite motion.
Y is the state vector (position-velocity vector) and P, is the
drag coefficient in segment k valid in the interval between times
1% and te+1: Let y and Py denote a small perturbations in Y and

Pk' respectively. Then




9 9

Yy = 3% F(Y:Pk) y + 5?: F(Y.Pk)Pk (7.

Writing G = 3F(Y,Pk)/aY (7
and

H = BF(Y,Pk)/aPk (7

the above equation may be written as

9 = Gy + Hpk (7.

To indicate that y, G and H are functions of time we

rewrite the equation in the form

y(£) = G(E)y(t) + H(t)p, (7.

The 6 x 6 state transition matrix ¢(t,e) is defined

as the solution of the differential equation

o(t,e)
with

¢(e,e)

e being the time of Epoch.
The six-vector of drag partials, Dk(t) is defined as

the solution of the differential equation

D, (t) = G(t)D, (t) + H(t), (7.

with D, (t,) = 0, (7

G(t)¢(t,e), (7.

I, (7.

2)

.3)

.3)

4)

5)

6)

7)

8)

.9)
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and (t) being defined only in the interval [t,, t . Equation
k’ tk+1)

(7.5) is similarly, for each value of k, valid only in the interval

[tk’ tk+1]' The solutions of equations (7.5) must be continuous

and satisfy the initial conditions

y(ty) = 0, (7.10) :
where t, = e, the Epoch Time. i

It will now be shown that if

t, St <t (7.11)

then equation (7.5) is satisfied by

k
x (t) = ¢(t,e) 152 o(ty,e)”'Dy_1(t5) Py

+ Dk(t)pk (7.12)

Differentiating equation (7.12) with respect to t,it
can easily be seen that equation (7.5) is satisfied. It remains

to be shown that the solution is continuous, i.e., that xk(tk) =

xk_l(tk). From equation (7.12) we obtain

k-1
xk-l(tk) = ¢(tk:e) 122 ¢(ti:e)-l Di-l(ti)pi-l

+ Dy 1 ()P s (7.13)

The above equation may be rewritten as

k
xk-l(tk) = ¢(tk.e) i§2 ¢(ti»e)-1 Di-l(ti)pi-l (7-14)
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From equations (7.9), (7.12) and (7.14) we deduce
that

X1 () = %, (5) (7.15)

Since x,(t,) = 0 it follows that xk(t) as given by equation
(7.12) is the required solution of equation (7.5), i.e., for t

satisfying equation (7.11),

k
y(t) = ¢(t,e) i§2 ¢(ti’e)-l Di-l(ti)pi~1

+ D (£)py (7.16)

It hence follows that the required partial derivatives

are given by

for t 2 ti+1' 3Y(t)/3pi = ¢(t-e)¢(ti+1»e)_lDi(ti+1)

for t; < t < t;,,, 3dy(t)/dp; = D (t) [ (7.17)

for t < t» 3y(t)/api =0

7.2 Absolute and Relative Constraints

To obtain the solution 8p of a linearized weighted least

squares problem, an equation of the following form must be solved

Nésp=h (7.18)

-43-




In the above equation, N is a positive-definite matrix
(the normal equations coefficient matrix) and b a vector (the
normal equations vector). Using the summation convention equation

(7.18) may be written in index form as

N(i,3)8p(3) = b(i) (7.19)

If all measurements are statistically independent, then

N(i,j) and b(i) are computed as the sum of terms of the form

AN(i,j) = W a—g“(‘ﬁ E%IJEY (7.20)
and
Ab(i) = W 3%“(5 (mo-m), (7.21)

where W, the measurement weight is inversely proportional to the

variance of the measurement error,

mo is the observed measurement
and m is the measurement calculated as a function
of a set of parameters p(k).
After the solution of equation (7.19) has been obtained

the estimated parameter is updated to p(k) + &p(k).

7.2.1 Absolute Constraints. 1If,a priori,we know that

parameter p(i) = a; and that the error in a; has a variance of o2,
then we may treat that information in exactly the same way as

measurement information. Hence mp = a;, m= p(i) and dm/3p(i) = 1.

A




In accordance with equations (7.20) and (7.21) the contributions

to N and b are then given by

AN(i,i) = o~2 (7.22)

s m b

Ab(i) = o‘z(ai - p(i)) (7.23)

7.2.2 Relative Constraints. If, a priori, we know

e s e oriiai s

that parameters i and j should assume the same value and that the
error in this assumption has a variance of o?, then we may treat
this information exactly the same way as measurement information.
Hence mo = 0, m = p(i) - p(j), am/3p(i) = 1 and m/3p{j) = -1.

In accordance with equations (7.20) and (7.21) the

contributions to N and b are then given by
_ J
AN(i,i) = 0”2 ] \

AN(i’j) = —0-2 o (7.24)

AN(j,j) = 0”2

and

doce? - L

Ab(i)

0=2 p(j) - p(i)
(7.25)

[l

‘ Ab(j) = o7% p(i) - p(J)

Note that m could equally well have been defined by m = p(j) - p(i).

The result, however, would be the same.

-45-




b v at A st e N

o ek, 1 LI i

 * R b T

H
4

8. The Lockheed-Jacchia Atmospheric Model

The equations presented in this section are based

partly on some equations supplied by Mr. George Stentz of DMAAC,
St. Louis, MO and partly on a computer program listing from the
same source. Part of the description comes from (Jacchia, 1960).

A modified version of the DMAAC program has been incorporated in

Photonap.

8.1 Description of Variables and Constants used in the Program.

¥ Angle between point of interest and point of maximum
solar heating effect as seen from the center of the
Earth.
_ (l4cos¥ ) 3

: - (Hgee)
= ,55 radians. Lag angle. Angle between the sun and
the point of maximum solar heating as seen from the
center of the Earth.

t Time (in days) from noon on January 1, 4713 B.C.

Jpo = 2436204. Number of days between January 1, 1958
and January 1, 4713 B.C.

t' Time (in days) since nocn on December 31, 1957.

w = .017203 radians/day. The Earth's orbital rate
about the sun

L Longitude of the Sun measured along the ecliptic from
the equinox

Lo -Longitude of the Sun when t' = 0

e = 0.01675. The eccentricity of the Earth's orbit

€ = ,4092 radians. Obliquity of the ecliptic
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1 slug/cu.

10.7 cm flux mea ured in units of 100 x 10 2?
watt/m?/cycle/sec

20 cm flux measured in same units as F,,,

é‘g} constants used in computation of F,o,,

Z%%U Frequency corresponding to a period of

4020 days (approximately 11 years)

= 0.85 Conversion factor for converting F,y.»
to the equivalent F,,

Atmospheric Density (slugs/cu.ft)
= % %E = é% log p (1/n.m.)
Height above the surface

76 n,m.
108 n.m.
n.m.
n.m.

nunaneh

378
1000

5.606 x 10~ '? slugs/cu.ft.

7.18 unless otherwise specified by user

153 n.m,

-15.738 unless otherwise specified by the user
.00368 (n.m.)-!

6.363

.0048 (n.m.)"!?

0.19

.0102 (n.m.)"!

1.9

.00504 (slugs/cu.ft.)(n.m.)$

6 x 10° (n.m.)?

1.852 km

Py opmnRnN

fr. = 0.515378 x 10'? kg/km?
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8.2 Description of Equations

The Jacchia Atmospheric Model is a dynamic model in
the sense that it is a function, not only of position, but also

of time. The time dependence is due to solar heating. However,

since solar heating is not instantaneous, the maximum perturba-
tion to the atmosphere will occur some time after noon, local
time (according to this model just after 2 p.m. local time). If
s is a unit vector pointing towards thé sun, then the maximum
perturbation will occur in the direction of s', where s and s’
point towards the same latitude, but s' towards a point A radians
further East. If u is a unit vector pointing towards the point

of interest, then cos y is defined by

cos y =u + s’ (8.1)
If u= (x,y,z) (8.2)
and s = (51,82,53), (8.3)
then
s' = (s1cos\ - s,sin), s,cosA + s;sin),s;) (8.4)
and
cosyp = (s1x + szy)cosi - (82X - s,y¥) sink + s; (8.5)

s is computed using the following equations

£ =t - Jp (8.6)

L = wt' + 2e sin wt' - Ly (8.7)

8 = (cosL, sinL cose, sinL sine) (8.8)
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Combining equations (8.3), (8.5) and (8.8) we obtain

cosy = (xcosL + ysinL cosc)cosi

+ (-xsinlL cose + ycosL)sin) + sinLsine (8.9)

Let g be defined by
[cosyp/2]¢,

oQ
]

g = (lisgﬂ)a (8.10)

Unless input by the user the 10.7 cm flux is given by

AR . it et b D A i i

F10'7 = Ce + Cy + cos(wFt') (8.11)

This is converted to an equivalent flux at 20 cm by the formulae

F20 = Cis Firo0,2 (8.12)

For the purpose of calculating the density, the atmosphere is

subdivided into four different regions, with different sets of

* TR

formulae being valid in each region. These are given below.

3 Region A h;<h <€ h,
; P = P1P2P3, (8.134)
) where q
g .
| o1 = 1) (8.144)
_ R ;
P2 =[Tt:—:T%l + (th:%%) on] (8.15A)




ps = 1 + cys B (8.
S« R SEE N | $F2 0 g '
P + P2 [hz:hx + hz'hx]-+ CisfP3 (8
Region B h,< h € h;
P =1poq (8.
where
0o = 10d2 - c26h + ¢, exp(-c,h) (8
and
q =‘on{1 + Czs[exp(caoh)-c“]g} (8.
p' = logelo[-cis*czecz7exP(‘Czah)]+'onczscsogxP(caoh)g
Region C h3<h £ h,
P = bleQ (8.
where
b - F10.7 8
1 = cas-ﬁy—— (
b: = g(1 - §32) + g (8.
Ve 22 _ 3 (1-p) C32
P R~ h 8 55y, (8
Region D h 2hy or h € h;
p=p"'=0 (8.

Note that in all of the above equations the density is computed

in slugs/cu.ft. and p' in 1/n.m. Before being used by Photonap

16A)

.17A)

13B)

.14B)

15B)

13C)

. 14C)

15C)

. 16C)

13D)

these quantities are converted to kg/km® and km™!, respectively.
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9. An Outline of Program Changes

The program changes made to Photonap fall into two
categories: (i) changes to existing routines, and (ii) the
addition of new routines. Two of the existing routines, SPOLCD
and SOLVER, were initially simply modified, but owing to the routines
in the process becoming extremely lengthy and unmanageable, they
were later split into smaller routines. Thus SPOLCD was split
into SPOLCD, SPOOLl, SPOOL2 and SP0100. SOLVER was split into
SOLVER, SOLV1, SOLV2 and SOLV3. The following totally new

routines have been added:

A. Routines associated with the Lockheed-Jacchia
atmospheric model: JACHIA

B. Routines associated with drag segmentation: DRAGU

C. Routines associated with Kalman filtering and smoothing:
KMNCON, KMNEVA, KMNIDE, KMNINI, KMNINV, KMNMP1l, KMNMP2,
KMNMP3, KMNRAN, KMNOUT, KMNSIM, KMNSM2, INVSYM, INVSYS,
MAT99, VXPROD.

D. Routines associated with GPS measurements: SELECT

E. Routines associated with normal equations for correlated

measurements: SOLVFU, SOLAWA

In addition to the changes described above, subroutine
SVARED, after a trivial change in the coding, was found to be
superfluous, and was hence removed from Photonap.

A flow chart of Photonap together with a short descrip-

tion of each routine is given in Appendix F.
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10.

(i)

(ii)
(iii)

(iv)

(V)

(vi)

(vii)

(viii)

(ix)

Changes to the Photonap User's Guide

The following has been added to the User's Guide.
Insertion into Section I of a general description

of control card set-ups for Kalman filtering and
smoothing.

Addition to 101 card input to specify Kalman filter mode.
Description of 230 card for specifying drag segments.
Addition of note (Note 13) to 601 card for handling of
drag coefficients appearing in different drag segments
of the same arc.

Description of 612 card for specifying constants required
by Lockheed-Jacchia atmosphere

Description of 614 card for specifying GPS filter
constants |

Addition of note (Note 5) to 701 card for processing of
correlated measurements output from Kalman filter or
smoother.

Addition to Appendix IB describing tape format for
Kalman filter input, and tape format for Kalman filter
output.

Addition of Appendix V describing example of the job

control language required for running Photonap on the

CDC 6400.

-52-



11. Test Runs

In order to check out the modified version of Photonap
a large number of test runs were made. These included running
the standard set of Photonap test decks, which are run after
every program modification. Five new test decks, designated PB4,
PB5, PB6, PB7 and PB8, have been added to the standard set, which
now consists of

non-photogrammetric test decks TESTXX, PAl, PA2,

PA3, PA4, PA5, PA5X1, PAS5X2, PA6, PA7, PA8, PA9,

PBO, PBl, PB2, PB3, PB4, PB5, PB6, PB7, PBS,

Photogrammetric test decks PAA, PAB, PAC, PAD,
PAE, PAF, PAG, PAGX]1,

combined test deck FATBOY.

A short description of each of the new test decks is given below.

11.1 Test Deck PB4. Lockheed-Jacchia atmosphere and multiple
drag segments. Two parts. |
(i) Data generation using Jacchia Atmosphere and a
single drag segment.
(ii) Orbit and drag coefficient recovery using U.S.
Standard Atmosphere. Six drag segments with

relative constraints. Epoch coincident with start

of first drag segment.




AT b £ -
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11.2 Test

Deck PB5. Lockheed-Jacchia Atmosphere and multiple

drag segments.

(1)

(ii)

11.3 Test

Two parts.

Data generation using Jacchia Atmosphere and a

single drag segment.

Orbit and drag coefficient recovery using U.S.
Standard Atmosphere. Six drag segments with ;
relative and absolute constraints. Epoch in

middle of fourth segment.

Deck PB6. Six point smoother using GPS measurements.

Three part run.
(1)
(ii)

(iii)

11.4 Test

GPS data generation using Lockheed-Jacchia Atmosphere.
Six point smoother using U.S. Standard Atmosphere.
Smoother output of position and velocity at 30

second intervals.

Orbit comparison between the smoother output and

the orbit used in data generation.

Deck PB7. Filter using GPS measurements. Three

part run,

(1)
(i1)

(iii)

GPS data generation using Lockheed-Jacchia Atmosphere.
Filter (0 point smoother) using U.S. Standard
Atmosphere. Filter output of position and velocity
at 30 second intervals.

Orbit recovery based on Lockheed-Jacchia Atmosphere.

Filter output used as measurement data.
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11.5 Test Deck PB8. Filter and smoother comparisons.

U.S. Standard
(1)

(iia)

(iib)

. SeTRem

Atmosphere used in all three parts:
GPS data generation,
Filter,

16 point smoother.

Comparison between orbit used in generation
(Part (i), pages 7 through 9) and the orbit
recovered (Parts (ii), pages 4 through 6)
shows the superiority of the 16 point smoother

over the filter.
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APPENDIX A 3

' Some formulae for the differentiation of the trace of matrix ’

products.

Given a positive-definite matrix D and general matrices

A and F, the following three formulae will be derived.

5% Trace (DFAFT) = DF(A + A") (A.1)
2 _ T
3T Trace (DFA) = DA (A.2)
) Ty -
3F Trace (DAF~) = DA (A.3)
Proof. Denoting the left hand side of formula (A.l1) by L,

we may express it in index form as

- _ 9
Lis = 37, E DopFbehedFad
a,b,c,d

azd D.iAjaFaa * bzc D;pFheAcj

_ T, T
= (D'FA” + DFA);;.

Since D is symmetric, formula (A.1) follows. Denoting

the left hand side of the second formula by M, we similarly

obtain:




. )
Mij ) Z DabFhchea
b

_ T, T

Since D is symmetric, the second formula follows.
Denoting the left hand side of the third formula by N, we find

that

_ (DAY,

which is equivalent to the third formula.




APPENDIX B

The combination of two independent unbiased minimum variance

estimates.

Given
(i) two independent unbiased estimates a and b

of a parameter vector, whose true value is xT,
(ii) A and B, the covariances of the errors in

a and b, respectively,

then the two solutions may be combined to give a new minimum

and

Proof.

where the

that x be

variance solution x, with an associated covariance P, where

»”
I

2]
|

Assuming x to be a linear combination of a and b, we

may write it in the form

x = Fa + F'b (B.3)

matrices F and F! have to be determined. In order

unbiased, we must clearly have

F! =1-F, ' (B.4)

P(A"'a + B™'b) (B.1)

= (A"' + B~ 1! (B.2)




where I is the identity matrix. Denoting the errors in x, a

and b by x, & and b, respectively, we deduce from equations

(B.3) and (B.4) that
% = Fa + (I-F)b (B.5)

Since a and b are independent it follows from the above and the
definition of the covariance that

P = FAFL

+ (I-F)B(I-F)' (B.6)

F is chosen such that the expected value of iTDi, where D is a
positive-definite matrix, is minimized. It turns out that as

long as D is symmetric and non-singular the solution is independent
of the choice of D. Remembering that if XY and YX are both

square matrices, then trace (XY) = trace (¥YX), it follows that

the quantity we are trying to minimize is the expected value of
trace (DiiT), i.e., trace (DP). From equation (B.6) and formulae

(A.1), (A.2) and (A.3) in Appendix A, we then deduce that

D[2F(A + B) - 2B] = 0. (B.7)
Hence
F(A+B) - B=0, (B.8)
and
F= (A"! + B~1)- a1 (B.9)
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From the above and equation (B.4) we find that
F! = (A"l + B'l)"lB"l’ (B.IO)

and from equations (B.6) and (B.8) we obtain,

= BF!
From the above and equation (B.10) it follows that

P= (A"! + B~1)"!,

which is equation (B.2). Equation (B.1l) follows from the above

(B.9) and (B.10).

and equations (B.3),

e o D ol i e




APPENDIX C

Updating the minimum variance estimate based on new independent

measurements.

Given

€9

an unbiased estimate a of a parameter vector,

whose true value is xT,

(ii) A, the covariance of the error in a,

(iii) a measurement vector Z satisfying the equation

Z = H xT + r, where (C.1)

E(r) = 0 E(rr’) = R, (C.2)

and H is a given matrix,
then the new minimum variance estimate x is given by

x = a + G(Z-Ha), (C.3

where
= aul Ty-1

G = AH"(R + HAH") ™}, (C.4)
and P, the covariance of the error in x, is given by

P=A- GHA (C.5)

Proof.

Equation (C.3) is clearly a general form for a linear

unbiased estimate of x.

We shall, therefore, assume

that x is given by equation (C.3) and then proceed to
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derive equations (C.4) and (C.5). Let X and 4 denote the errors
in x and a, respectively. It then follows from equations (C.1),

(C.2) and (C.3) that

a+ G(xr - Ha), i.e.

EL
It

-]
]

(I - GH)3 + Gr (C.6)

Since a4 and ¥, by assumption, are independent, it follows that

P = (I-GH)A(I-GH)T + GRGT (C.7)

G is chosen such that the expected value of iT

DX, where D is a
positive-definite matrix, is minimized. It turns out that as

long as D is symmetric and non-singular the solution is independent
of the choice of D. Remembering that if XY and YX are both square
matrices, then trace (XY) = trace (YX), it follows that the quantity
we are trying to minimize is the expected value of trace (DiiT),

i.e., trace (DP). From equation (C.7) and formulae (A.l), (A.2)

and (A.3) in Appendix A, we then deduce that

D[2G(HAHT+R) - 2AHT ] =

|
o

Hence,

G(HAHI+R) - AHT = 0 (C.8)

from which equation (C.4) immediately follows. Post-multiplying
equation (C.8) by 6T and subtracting the result of equation (C.7)

yields equation (C.5). This completes the proof.
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APPENDIX D

Differential equation associated with timing bias and variations

in the drag coefficient.

Given the differential equation

¥(t) + X(t) = v(bv), (D.

where a dot denotes differentiation with respect to t, and v(t)

is a random variable with

Ev(t) = 0 (D.
Ev(ta)v(tb) = V §(ta - tb), ' (D.

6(t) being the Dirac delta function satisfying

§(t) =0 if t # 0 and (D.

Jf §(t)dt = 1, (D.

it will be shown that

x(t)

and

x(t)

where h(t) and h(t) are random variables satisfying

Eh(t) = E(h(t) = 0, (D.

Eh(t)? = yv[2t - (l-exp-t)(3-exp-t)] (D.

Eh(t)? = V[l - exp-2t] (D

Eh(t)h(t) = ¥V[1 - exp-t]? (D.
-64-

xo + %o (l-exp-t) + h(t) (D.

Xoexp(-t) + h(t) (D.

D

2)
3)

4)

5)

6)

7y

8)
9

.10)

11)




L edamm Ry X

PR

and

xo = x(0), X, = x(0)

Proof. Since

%E [x(t)expt] =[% + x]expt, equation (D.1)

may be integrated to give

t
x(t)expt - xo = Jf exps v(s)ds

Hence

x(t) = Xoexp(-t) + h(t),
where

. t

h(t) = ,’;exp(s-t)v(s)ds
Since

- t
%T:' J;v(s) [l-exp(s-t)]ds = J; exp(s-t)v(s)ds,

it follows from equation (D.15) that

t
h(t) = ,£ v(s) [l-exp(s-t)]ds

Integration of equation (D.14) yields

x(t) = xo + Xo (l-exp-t) + h(t)
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Equations (D.6) and (D.7) have thus been derived. Equations (D.8)

easily follow from equations (D.15), (D.16) and (D.2). Equations
(D.9) through (D.1ll) will now be derived. From equations (D.15),
(D.16) and (D.3) it follows that

t
Eh(t)2 =V {[1-exp(s-c)]’ds, (D.18)
. t
Eh(t)?2 = V / [exp2(s-t)]ds, (D.19)
. t
E h(t)h(t) = V { exp(s-t) [l-exp(s-t)]ds. (D. 20)

Integrating equation (D.18) we obtain

Eh(t)? = V[t - 2(1-exp-t) + %(l-exp-2t)],
which after some simplification leads to equation (D.9). Equations
(D.19) and (D.10) are easily seen to be equivalent. From equation
(D.20) we deduce that

E h(t)h(t) = V[(l-exp-t) - %(l-exp-2t)],

which can be seen to reduce to equation (D.11). This completes

the derivation of the required equations.

Expected values of x, x, x? and x? for large values of t.

It follows from equations (D.6) through (D.1ll) that

for large values of t,
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Ex(t)

Ex(t)

fl

Ex(t)?

Ex(t)?

(%o + X0)2 + Vt =Vt

XV

Autocorrelation functions for x and x.

(D.21)

(D.22)

(D.23)

(D.24)

If ta > t then we obtain gimilarly to equations (D.18)

and (D.19)

E h(t)h(ta) =
and

E h(t)h(ta) =
Hence,

E h(t)h(ta)/V
and

E h(t)h(ta)/V

Writing ta =

t

we deduce that for large

./o'(l-exp(s-t)] (1-exp(s-ta)]ds,

t

t

{'exp(s—t)exp(s-ta)ds.

t-[1-exp-t]-[exp(t-ta)-exp-ta]

%[exp(t-ta)-exp(-t-ta)],

%[exp(t—ta)-exp(-t-ta)]

+

t,

At,
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E h(t)h(t + At)

I

A further quantity

x(t) - x(t + At) =

Hence we obtain with the aid

E[x(t)-x(t + At)]?

Thus, for large t,

E[x(t) -x(t + At)]

It follows from equations (D.6) and (D.8) that for large t,

vt (D.30)

and
E h(t)h(t + At) = %V exp(-At) (D.31) 1
Thus for large t, é
i
[Ex(t)x(t + at)) /[Ex(r)?]= 1 (D. 32)
and L
[Ex(t)x(t + at))/[Ex(t)?] = exp(-at) (D.33) |

of interest is E[x(t) - x(t + At)]z.

h(t) - h(t + At).

of equations (D.9), (D.27) and (D.29)

B

Eh(t)2 + h(t + At)?

2E h(t)h(t + At)

]

v[t-1.5] + v[t + at - 1.5]

[

2v[t - 1 - ¥ exp(-At)]

‘= v[at - (l-exp-at)] (D. 34)
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If furthermore At is small the above may be approximated
E[x(t) - x(t + at)]® = %V (at)? (D. 35)

Change of variable formula for the Dirac delta function.

If in equation (D.5) we change the variable of integra-
tion from t to
s = ft (D. 36)

where f is a positive constant, we obtain

J/? §(s/f) ds = £ (D.37)

- 00

Consequently,

§(s/f) = £5(s) (D. 38)




APPENDIX E

Selection of 4 GPS Satellites for Optional Position Determination

In section 6 of the main text it was shown that the

measurement dj to the j-th satellite is given by

ds = J{Ej-i)T(Ej-f) + b, (E.1)

where ;j is the position vector of the j-th GPS satellite, r is
the position vector of the user, and b is a measurement bias.

In this appendix we shall determine where the 4 GPS

satellites ideally should be located in order that the user's

position may be calculated with the least amount of error. To

do that we make the following assumptions

E Grj = E édj =0, (E.2)

; where ij is the error in the position of the j-th GPS satellite
! and Gdj is the measurement error. We further assume that the

errors are uncorrelated:

= =T _ - .
E Grjérk =0, E Gdedk 0 for j # k,
@ and
€ E sfjanT = 52 1, E(8d)? = of (E.3)
where o and 0, are scalars, and I is the 3 x 3 identity matrix.
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If the error in the calculated user position is denoted

by 8r and the error in the calculated bias by &b, then it follows

[N

from equation (E.l) that if the errors are small then

E—1 T Y - r
Gdj vj (tSrj ér) + &b, (E.4)

where the unit vector Vj is defined by

vi = (Fy - D/IE - (E.5)

Rearranging the terms in equation (E.4) we find that

T -
. 6r - &b = s,, E.6
vJ r sJ ( )

T -~
where sj vj Grj Gdj (E.7)

From equations (E.2) and (E.3) we deduce that

Esj =0, (E.8)
Esgsy = 0 if j # k (E.9)
and
2 - 1 =2 2
l':‘.sj Vj o vj + 0y

Since £ is a unit vector the last equation reduces to

E‘.sj2 = g2, (E.10)
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distance.

(E.6) may be rewritten as

A

where

Vo

It is interesting

From equations (E.8),

deduce that

Es =0 andEssT

Solving equation (E.12) we obtain

NE

2

g

33

b

1]

-1
-1

-IJ

to note from equations (E.12) and

where I is the 4 x 4 identity matrix.

A-'s

~72-

= 62 +Ooz

Combining the measurement from four GFS satellites, equation

g
Sp

S3

[S4]

(E.13) that the position error 8r is a function of the 'user to

GPS satellite' direction, but independent of the corresponding

(E.10), and (E.13) we




e

We hence deduce with the aid of equation (E.l4) that

Elst] =0 (E.16)
&b
and
E |6T 6t 6%sb | = o? A72A°T (E.17)

&b 6%T 6b2

It will now be shown that in order that the expected
square of the position error (trace E 6T6T') be a minimum, the
angles between the four vectors v,, v., v3 and v, should all be
equal.

Let

A"! = B = b; bz b3 by (E.18)
hy; hz h; hy

where B is a 3 x 4 matrix; h is a 4-vector; b,, b,, b3 and b, are
3-vectors; h,, h:, hs and h, are scalars.

Since AA"! = A"!A = I it follows from equation (E.13)
and (E.18) that

v.l b, = 6., + h. (E.19)

where Gij is the Kronecker delta,
> b, T
v, =1, (E. 20)
i=1 i’'i
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4
2 h, = -1 (E.22)

From Equations (E.17) and (E.1l8) we deduce that
- "T - 2 T
trace E §rér = o¢? trace BB (E.23)

In order that the above quantity be a minimum it is
necessary that

'] T
v trace BB" + _2

T =
p 1=1(Vi v; - 1))\i =0, (E. 24)

the Lagrangian multipliers Aj having been introduced to take into
account the fact that each vy is a unit vector. The following

result is derived at the end of this appendix

52— trace BBT = -2 BBT b. (E.25)
vj | 3

Using equation (E.25) we deduce from equation (E.24)

that

I
Ajvj BB bj (E. 26)

It follows from equations (E.21) and (E.26) that

4
j§1 Ajvj =0 (E.27)
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Premultiplying equation (E.26) by biT we deduce with the aid

of equation (E.19) that

I
D
o

=
<

T ppl
= Aj(aij + h;) (E. 28)

Since the left hand side of the above equation is symmetric in

i and j we conclude that

A, h; = Ai h. (E.29)

Summing the above equation with respect to i we deduce with the

aid of equation (E.22) that

A: = -h. T A, (E. 30)

There does not appear to be any reason why Aj should differ from

Ak‘ We therefore make the assumption (later to be justified, of

course) that for all j,

A = A (E.3D)

h, = -% (E.32)

Since by

(E. 33)




we conclude from equations (.31), (E.20) and (E.26) that
Al = BBT BBT . (E. 34)

Since BB is a semi-positive definitive matrix this is only

possible if
BB = /3 I (E.35)
It hence follows from equation (E.26) that

bj = /A vy o (E. 36)

From the above and equation (E.32) and (E.19) we conclude that

/X viT vi= 8y - X (E. 37)

Since Vi is a unit vector it follows that (i = j in the above

equation)

/X =3 (E. 38)

Hence if i # j,

vl v = - % (E.39)

This is the desired result. We conclude from equations

(E.17), (E.18), (E.35), (E.38), (E.32) and (E.21) that

E {616XT  §%6b 41 o
= g? (E. 40)
Sb6TT §b?2 o X
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A set of unit vectors satisfying equation (E.39) are

given by
vi=(¢ 0 , o, 1)
vi = (2/2/3 o , ~-1/3 )
(E.41)
vi=(-/273 , Y273 , -1/3 )
vi=(-/2/3 , -/2]3 , -1/3 )
By equations (E.36) and (E.38)
b. = £ v, (E.42)

With hj given by equation (E.32), equations (E.19)
through (E.22) are readily verified.

From equations (E.33), (E.20) and (E.42) it follows that

BBT = é I’ (E.43)

which is consistent with equations (E.26), (E.42), (E.31) and
(E.38). The solution set (E.41l) is thus justified. Note that the
angles between the vectors £ equal cos™!(-1/3) or 109.5 degrees,
and that the expected square of the position error as given by

equations (E.23) and (E.43)

E 6T 6% = % o2 (E. 44)
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E.1l The Selection of Two Satellites when two have already

been Selected.

Let us assume that we are given two vectors v; and va.
There is no loss of generality in assuming that they are of the
form
v,T= (cosp, sinp, o)

(E. 45)
v, T = (cosp,~-sinp, 0)

For reasons of symmetry it follows that v; and v, must be of the
form
vsT = (cosq, 0 , sinq)

(E. 46)
wI= (cosq, 0 , -sinq),

for some angle q to be determined. From the above and equation

(E.13) it follows that

A = [cosp, sinp, o , -1]

cosp, -sinp, o , -1
(E.47)

cosq, 0, sinq , -1

cosq, 0 -sinq , -1
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Hence

ATA =[ 2(cos?p+cos?q), o , 0 , -2(cosp+cosq)]
0 , 2sin?p, O , 0
(E.48)
0 , 0 , 2sin?q, 0
-2 (cospt+cosq) |, o , o , 4 ]
Inverting the above matrix we obtain
ATA™T
- B 1 0 0 cosp+cosq i
(cosp-cosq)?2 2(cosp-cosq)?
0 1 0 0
2sin?p
(E. 49)
0 0 L 0
2sin2q
cosptcosq 0 0 cos?p+cos?q
 2(cosp-cosq) ? (cosp-cosq)ZJ
Comparing the above with equation (E.18) we note that
trace BBT = 1 L 41 (E. 50)

(cosp-cosq)?  2sin?p 2sin?q
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Since BBT is proportional to the expected square of the

position error, we choose q such as to minimize that trace. Letting

the partial derivative with respect to q vanish we deduce that

2sing + 089 _ g (E.51)
(cosp-cosq)? sin3q
Let cosp = ¢ and cosq = X (E.52)

Corresponding to equation (E.51) we then obtain

f(x,c) = 0, (E.53)
where
f(x,c) = 2(1-x2)2 + x(c-x)? (E. 54)
In finding the solutions of the above equations, we may assume that
c >0, (E.55)

since this only involves the definition of the coordinate axes.

Obviously, ¢ < 1. From equation (E.54) we find that

£(-=,c) = + @
f(-1,c) = -(ctl)?
£(0,c) = 2

£(l,¢) = -(1-¢)3
f(o,c) = + =




i
i
!
§
i
i
i
a
i

From the above it is evident that equation (E.53)
always has 4 real solutions, and of those there is always one
and only one in the interval (-1,0). Since cosp is positive it
is quite obvious from equation (E.50) that the desired solution
is negative. Although it is not simple to obtain an exact

solution, a good approximation is given by

x = g(e), (E. 56)

where

g(e) = .327c - .765 (E.57)

the linear approximation being based on the exact solutions for
c=1 [x = (/T?—S)/Z] and ¢ = 0 [x = —/2—/5].
Let A? denote the expected square of the position error.

From equations (E.23), (E.50) and (E.52) we obtain,

A2)g2? = 1 + 1 + 1 (E.58)

(c-x)?2 2(1-¢)? 2(1-x2?)

A comparison of exact and approximate values of x as
functions of c are given in table E.1. Formula (E.58) has also been
evaluated in the table. Note that the optimum value for

c=.577=1//3 corresponds to solution (E.41).
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TABLE E. 1 Exact and Approximate Values of x, and the
Expected Square of the Position Error as a
Function of c.

c x(exact) x = g(c) | 012 B3y A2 /o?
.000 -.765 -.765 180.0 | 80.2 3.41 }
174 -.710 -'708, 160.0 89.9 2.80 !
.342 -.655 =.653 140.0 98.5 2.45
.500 -.603 -.602 120.0 | 106.0 2.27
.643 -.555 -.555 100.0 112.6 2.27
.766 ~-.515 -.515 80.0 | 118.0 2.50
.866 -.482 -.482 60.0 | 122.4 3.20
. 940 -.458 -.458 40.0 | 125.5 5.44
985 | -.443 - . 443 20.0 |127.4 | 17.91 ;
1.000 -.438 -.438 0.0 ]128.0 o 3
. 577 -.577 -.576 109.5 109.5 2.25
:
812 is the angle between satellites 1 and 2 "
as seen from the user. 1

034 1is the angle between satellites 3 and 4 !
as seen from the user.

A% is the expected error of the square of
the position error

is the sum of the measurement error variance
and the variance of the GPS position error
measured along any axis.
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E.2 Selection of the Fourth Satellite When Three Have

Already Been Selected.

In equation (E.13) let

Ay = vF and

T
V2

T
V3

Then
A = Ao,"do

Vi , -1 »

Let

A-Y = [Bo, by
hoT -h, R

e S £ Faie 4 vt Qi < A7

Then
A¢By - dohf = I
Aob, + doh, = 0
V%Bo - hf =0
vib, + h, =1

From equation (E.63) we obtain

bu = A;bdohu.
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L et AR T

From the above and equation (E.65) we find that
he = (1 - vi Ajldo)"!? (E.67)
From equation (E.62) and (E.64) we obtain

vi (A;! + Ajldoh:) - hy = 0.
Hence,

hf = (1-vi& Agido)~? v A?

- hyve A7l (E. 68)

From the above and equation (E.62) we deduce that

Bo

!

A5 '+ Aj'dovi Aj'h, (E. 69)

Writing

o
o
]

A7'dy, and f = A;T v, (E. 70)

equations (E.66), (E.67) and (E.69) may be rewritten in the form

bu = = eohu (E.71)
hy = (l-vieg)~! (E.72)
and Bo = Aj' + eof’ h, (E.73)

Comparing equation (E.18) and (E.61l) we see that

B = [By, bl (E.74)
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—
It hence follows from equations (E.71) and (E.73) that
BBY = A7'A; T+ A7'f e hy + eof A;T h,
+ eofo e} h + eer K, - (E.75)
Hence

trace BBT = trace Aj'A;T + 2hiecAi!f
2 T T
+ hz.eo €y (1 + £ f) (E.76)
Since the expected square of the position error is proportional

to trace BBT, it follows that we must choose the fourth satellite

such that
2h,eq A7'f + B2 Sep (1 + £T £)

is a minimum. A, as defined by equation (E.59) may be inverted

using the formula
A7} = (vaAvs, ViAv,, VaAv2)/ [(ViAv,) <v3] (E.77)

E.3 Derivation of Equation (E.25)

The desired formula is most easily derived using the
customary index summation convention. In what follows Latin indices
will assumethe values 1,2,3,4 and Greek indices the values 1,2,3.

Since B is a 3 x 4 matrix it follows that

(BBT)aB = By;Bgs (E.78)
Hence
trace (BB') = B ;B , (E.79)
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From equation (E.18) we deduce that

(BA)aB = GaB (E.80)
Consequently
BakAks =S8, (E.81)
and
() =
Ju
Hence
9 =
(5§5u Bak)‘Aks + Bajésu =0 (E. 83)
Post multiplying the above equation by A;E we deduce that
9 -
K. Bas t BaJAu1 0 (E. 84)
Ju
i.e.
9 =
K. B,; = 'BajBui (E. 85)
Ju
a ] -
B ngu Bai - BajBuiBai’ (E. 86)
9 T
and ngu trace BB -2 BGJBulBal (E.87)

In accordance with equations (E.13) and (E.18) this may also be

written as

(lg-— trace ma"’)u - - 2 (BT, (), (E.88)




Hence

the desired result.

-2
V3

trace BBT = -2BBTbj,

(E.25)




APPENDIX F

Flow Charts and Short Descriptions of Fotonap Subroutines
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Flow Chart F.6
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Flow Chart F.7
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Flow Chart F.9
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Flow Chart F.10
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ALPHABETIC LISTING AND SHORT DESCRIPTION OF
PHOTONAP SUBROUTINES

SUBROUTINE
CALLED
Name BY PURPOSE OR FUNCTION
ATMIN FINDOG Reads tabulated atmospheric densities
from file LUA \
t
ATMOUT GENFIL Writes tabulated atmospheric densities ‘
on file LUA
BETA ION Used in computation of ionospheric
corrections
CATO000 SPOLCD Converts ''free form" card input to
standard NAP format (not on 1108)
DARITE SOLVER Utility routine for direct access
INVPRE file 43
REDSKM
INVERT
INVRTB
INVRTC 4
DAYHMS NUTION Converts (Julian day, seconds of day)
EDIT to (year, month, day, hour, min, sec)
f INTPRT
IONOSF
RESID
SIMOUT
VISIBI
KMNOUT
KMNSIM
KMNSM2
DBREAD PREINT Utility routine for direct access
file 41
DBURN INTEG Adds velocity increment to satellite !
velocity (Discrete thrust)
DEFALT DREDIT Initializes program constants to their
default values (See User's Guide)
DENS EXPAND Computes atmospheric density as
function of height (¥*)
DGRITE PTSTAR Utility routine for direct access
SOLVER file 40
PRTIAL
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SUBROUTINE

CALLED
Name BY PURPOSE OR FUNCTION
DKGK ION Used in computation of ionospheric
corrections
DKSICO ION Used in computation of ionospheric
corrections
DRAGU INTEG Called at the end of each drag
segment (except the last) to calcu-
late the appropriate partial deriva-
tives
DRAVAR ENGRAT Computes drag contribution to varia-
tional equations (%)
DREDIT OLDMAN Control routine for processing control
card input
DUMDUM PHOTO Dummy routine used for switching
program overlays
EDIT DREDIT Edits observed data or (in simulation
mode) generates random numbers
EIGN FINALP Computes eigen-values of a matrix
ENBVAR ENGRAT Computes central term and planetary
contribution to variational equations
(*)
ENGRAT INTEG Control routine for each integration
step (%)
ENROOT ENGRAT Finds the zero of a function expressed
OCCULT as a power series
EXPAND ENGRAT Develops power series coefficients for
satellite vector (%)
FINALP OLDMAN Prints final results
FINDOG INTEG Initializes integrator at start of
integration or on change of origin
FIREAD FINDOG Utility routine for direct access
INTGA file 41
FLREAD FINALP Utility routine for direct access
file 41
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SUBROUTINE
CALLED
Name BY PURPOSE OR FUNCTION !
|
GENBUG GENFIL Debug print for subroutine GENFIL =
(formerly part of GENFIL)
: GENFIL DREDIT Generates internal files based on
i control card input
i .
; GEOCEG MEASXX Routine for handling geoceiver
! measurements
GEOS EDIT Reads data tape in GEOS format
GETTAP | READE Reads planetary ephemerides from
file (10)
GK ION Used in computation of ionospheric
corrections
GPRSM2 EDIT Reads data tape in NAP format
GROUND PTSTAR Estimates ground point coordinates by
projecting photographic plate coordi-
nates onto Earth's surface
HOPRFT GEOCEG Tropospheric refraction corrections
for geoceiver data
IEMCOL GENBUG Subroutine for unpacking integers
and storing them (unpacked) in an
array
. IEMSET DEFALT Function for packing integers
: INP600 '
GENFIL
] IEMVAL DEFALT Function of unpacking integers
i GENFIL
i
‘5 INPBUG INPCRD Called by INPCRD for debug print
Y
: INPCRD DREDIT Processes control card input
2 INP100O INPCRD Used for processing series 100 input
cards (formerly part of routine
INPCRD)
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SUBROUTINE

CALLED
Name BY PURPOSE OR FUNCTION
INP200 INPCRD Used for processing series 200 input
cards (formerly part of routine INPCRD)
INP300 INPCRD Used for processing series 300 input
cards (formerly part of subroutine
INPCRD)
INP600 INPCRD Used for processing series 600 input
cards (formerly part of routine INPCRD)
INP700 INPCRD Used for processing series 700 input
cards (formerly part of routine INPCRD)
INTCOD INP200 Generates arrays for recovery of gravity
parameters (spherical harmonics or
mascons) :
INTEG OLDMAN Control routine for integrator
INTERP TIMARR Interpolation routine used for setting
up tables of time corrections
INTGA INTEG Prints integrator output at end of
integration of each arc
INTPRT ENGRAT Prints time corresponding to integrator
INTGA output
INTP1 PREPAR Estimates difference between integrator
ENGRAT time and UTC through interpolation
PRTIAL
PTSTAR
INTP2 NUTION Estimates difference between UT1l and
integrator time through interpolation
INVERT SOLVER Part 1 of matrix inversion
INVPRE SOLVER Used in processing photogrammetric data.
(i) resequences file 26 (IPASOT) of
ground point images on file 38. (ii)
on first iteration writes ground point
records from file 25 (IARCOT) to file
23 (IGPT)
INVRTB SOLVER Part 1 of matrix inversion. Prints
intermediate results
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SUBROUTINE

T

CALLED
Name BY PURPOSE OR FUNCTION
| INVRTC SOLVER Similar to INVRTB, but solution
obtained without completing matrix
inversion
INVSYM KMNCON IN SITU inversion routine for positive
definite matrix in upper diagonal form
INVSYS EDIT Similar to INVSYM. Additional feature
is to check for singularity
ION IONOSF Used in computation of ionospheric
corrections
IONOSF PRTIAL Used in computation of ionospheric
corrections
JACHIA DENS Computes atmospheric density (Lockheed-
Jacchia model)
JULDAY SPOLCD Converts (year, month, day, hours,
INP200 minutes, seconds) to (Julian day,
IONOSF seconds of day)
KEPLER PREINT Converts Keplerian to Carctesian input
KICKER INTEG Initializes integrator common blocks
KMNCON OLDMAN Control routine for Kalman filtering
and smoothing
KMNEVA KMNCON Used in Kalman filtering for evaluating
integrated power series
KMNIDE KMNINI Store (9 x 9) identity matrix in required
KMNCON location
KMNINI KMNCON Initialization routine for Kalman filtering
and smoothing
KMNINV KMNCON Used in Kalman filtering for calculating
the transition matrix relative to the
previous time point (given the transition
matrices relative to epoch)
KMNMP 1 KMNCON Utility routine for computing C = A * B
where A is symmetric and stored in upper
triangular form
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SUBROUTINE

CALLED |
Name BY PURPOSE OR FUNCTION E
KMNMP 2 KMNCON Utility routine for computing C = A * B, |
where C is symmetric. C is stored in
upper triangular form
KMNMP3 KMNCON Utility routine for computing
C=AT « B * A, and x = ATy. B and C
are symmetric and stored in upper
triangular form
KMNOUT KMNCON Used to output the parameter estimates
(and their covariances) from the Kalman
filter and smoother. (Output on file
29 (ITAPE))
] KMNRAN KMNCON Random number generator associated
] with simulations in Kalman filtering
KMNSIM KMNCON Simulates GPS output used in Kalman
f filtering (Output on file 33 (LF33))
1 KMNSM2 KMNCON Printout routine for Kalman filtering.
! In simulation mode prints full 9 para-
i meter state-vector. In filter or
§ 1 smoother mode prints only 3 parameter .
state-vector (first 6 parameters
{ printed in KMNOUT)
i
i MAGFIN ION Used in computation of ionospheric
corrections
L MAIN . Control routine for NAP program
(see photo) A
_ MASCON EXPAND Computes mascon contributions to
: satellite acceleration (%)
MATINV KMNINV Matrix inversion
KMNCON
DBURN
DRAGU
MATZEV ENGRAT Evaluates state transition matrix at
end of integration step (*)
MATZEX ENGRAT Develops coefficients for power series
?ﬁgansion of state transition matrix
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SUBROUTINE

CALLED
Name BY PURPOSE OR FUNCTION
MAT23 PLATEC Matrix multiplication (2x3)x(3x3)
MAT3T3 MEASUR Matrix multiplication (3x3) 'x(3x3)
MEASXX (' indicates transpose)
PLATEC
GROUND
PTSTAR
TERRA
MAT31 MEASUR Matrix multiplication (3x3)x(3xl)
SP0O2A3
MEASXX
TDRSS
PTSTAR
PLATEC
MAT32 PTSTAR Matrix multiplication (3x3)x(3x2)
MAT33 NUTION Matrix multiplication (3x3)x(3x3)
PTSTAR
PLATEC
STARAN
ROTATE
MAT99 KMNCON C=A*B. A is a (9x9) matrix,
C and B are (9xn), where n = 9 (entry
MAT99) or n = 1 (entry MATI91)
MEASUR PRTIAL Routine for handling the following
measurement types: RANGE, AZIMUTH,
ELEVATION, RIGHT ASCENSION, DECLINATION,
MINITRACK DIRECTION COSIN:S, X30 and Y30
ANGLES, DISTANCE TO ELLIPSOID, RANGE
RATE, MINITRACK RATES, X85 and Y85
ANGLES, STATE VECTOR MEASUREMENTS
MEASXX PRTIAL Routine for handling the following
measurement types: RANGE SUM, RANGE
SUM RATE, GRARR, TDRSS, GEOCEIVER
NBDNEX ENGRAT Develops coefficients for power series
expansion of Sun, Moon, and Planets (*)
NBDPEX ENGRAT Computes central term and planetary
EXPAND contribution to satellite acceleration
(*%)
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SUBROUTINE
CALLED
Name BY PURPOSE OR FUNCTION
NEWJPL INTEG Used in conjunction with READE and
GETTAP to obtain planetary ephemerides
NUTION GENFIL Calculates precession/nutation matrix
PREINT and Greenwich Hour Angle
ENGRAT
PRTIAL
PTSTAR
SOFRT
KMNCON
QOCCULT ENGRAT If satellite is orbit around body A,
FINDOG this routine determines if satellite
is visible from body B
OFDATE SOFORT Rotates vector or matrix from "inertial
SPO2A3 1950.0" to '"true of date" (Double
SOFSEC Precision)
XFORM
KMNEVA
OLDMAN PHOTO ("old main'") secondary control routine
for NAP program
04DATE SOFRT Rotates vector or matrix from '"inertial
1950.0" to "true of date" (single
precision)
PAGE SPOLCD Prints page heading
DREDIT
EDIT
INTCOD
PREPAR
RESID
FINALP
SIMOUT
VISIBI
KMNINI
SOLVER
SOLV2
INVRTB
INVRTC
PFSOLV SOFORT Evaluates partials of satellite vector
w.r.t. continuous thrust parameters
using previously computed power series
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SUBROUTINE

CALLED
Name BY PURPOSE OR FUNCTION
PFVARY ENGRAT Develops power series coefficients for
partials of satellite vector w.r.t.
continuous thrust parameters (%)
PLATEC PTSTAR Computes predicted photographic plate
coordinates and range (Photogrammetric
measurement types 7-9)
POTSOL SOFORT Evaluates partials of satellite vector
SOFSEC w.r.t. gravity parameters using pre-
viously computed power series
POTVAR ENGRAT Computes central body (excluding central
term--see ENBVAR) contribution to
variational equations (*)
PREINT PREPAR Sets up arrays for integrator based
on current values of "solve for"
parameters
PREPAR OLDMAN Sets up afrays for integrator based
on control files
PRTBG1l PRTIAL Output debug print from subroutine
PRTIAL
PRTBG2 PRTIAL Output debug print from subroutine
PRTIAL
PRTBG3 PRTIAL Output debug print from subroutine
: PRTIAL
PRTIAL OLDMAN Computes differences between observa-
tions and predicted observations. Also
computes associated partials. Results
output on file (ISFILE)
PTCMPA PRTIAL Data compression associated with sub-
routine PRTIAL (formerly part of PRTIAL)
PTINIT PRTIAL Used for initializing variables used in
subroutine PRTIAL (formerly part of
PRTIAL)
PTSTAR PRTIAL Routine for handling photogrammetric
measurements (formerly part of PARTIAL)
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SUBROUTINE

CALLED
Name BY PURPOSE OR FUNCTION |
RAN601 INP600 Modifies a parameter value by adding
INTCOD a random Gaussian number with a given
standard deviation

READE NEWJPL Used in conjunction with GETTAP to
obtain planetary ephemerides

READER EDIT Utility routine for read/write from/to

RECPOT sequential file
PRTIAL
SOFORT
SOFSEC
PTSTAR

READU ION Used in computation of ionospheric
corrections

RECCOF ENGRAT Develops power series coefficients for
partials of satellite w.r.t. a single

{ parameter (Used for solar pressure and
drag) (*)
RECPOT ENGRAT Develops power series coefficients for
partials of satellite vector w.r.t.
gravity parameters (%)
REDISK PRTIAL Utility routine for read/write of
PTINIT totally stable parameters on random
PTSTAR access file

REDSKK SOLVER Utility routine for read/write of totally
SOLV1 stable parameters on random access file
INVERT
INVRTB
INVRTC

REDSKM SOLVER Utility routine for read/write of normal
SOLVFU equation coefficient matrix on random
SOLV1 access file
SOLV2
INVRTB

REFRCT PRTIAL Computes tropospheric refraction corrections
TDRSS

REPRT2 DREDIT Generates printed report of run conditions
as specified by the control cards

(temporarily removed from NAP)
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SUBROUTINE
CALLED
Name BY PURPOSE OR FUNCTION
REREAD RESID Utility routine for direct access
file 41
RESID OLDMAN Prints measurement residuals
FINALP
ROTATE PTSTAR Computes a rotation matrix corresponding
STARAN to sequential rotations about principal
TERRA axes
ROTINT PRTIAL Converts (latitude, longitude, height)
to Cartesian coordinates. Computes
rotation matrix "Earth fixed Geocentric
to Local"
ROTPAR MEASUR Rotates measurement partials w.r.t.
MEASXX satellite state-vector from "Earth fixed"
to "True of date"
ROTVFD MEASUR Rotates a vector (v) from "true of date"
MEASXX (D) to "Earth fixed" (F)
SOFSEC
ROT1 PTSTAR Computes a rotation matrix corresponding
ROTATE to a rotation about a principal axis
RSUM MEASXX Computes predicted range sum and range
sum rate measurements (Measurement
types 16-17)
SELECT KMNCON Associated with GPS measurements. Computes
GPS satellite position, user distance
to them and partial derivatives w.r.t.
user position. In simulation mode,
selects an optimal set of 4 GPS satellites.
SICOJT ION Used in computation of ionospheric ;
MAGFIN corrections b
SIGWT FINALP Converts weights to standard deviations
and vice versa
SIMOUT OLDMAN Computes simulated measurements. Outputs
results on file
SKRIV PRTIAL Utility routine for writing data on
PTSTAR sequential file
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SUBROUTINE

Name

CALLED
BY

PURPOSE OR FUNCTION

SOFORT

SOFRT

SOFSEC

SOLAWA

SOLREC

SOLVER

SOLVFU

SOLV1

SOLV2

PRTIAL
MEASUR
GEOCEG
PTSTAR

FINALP

MEASXX
GEOCEG

SOLVFU

SOFORT

SOFSEC

OLDMAN

SOLVER

SOLVER

SOLVER

Reads power series for primary satellite
state vector and partials from sequential
file and evaluates at required time
point

Reads power series for primary satellite
state-vector and partials from sequential
file and evaluates partials w.r.t.

the initial state-vector. Computes
state-vector covariance matrix

Reads power series for secondary satellite
state-vector and partials from sequential
file and evaluates at required time point

Function for computing ATWA, ATWy, yTWy.
A is a (6xn) matrix, y is a 6-vector.

W is a (6x6) symmetric matrix stored in
upper triangular form. (called from
subroutine SOLVER when processing data
from Kalman filter output)

Evaluates power series to obtain
partials of satellite state-vector
w.r.t. a parameter (solar pressure and.
drag)

Control routine for generating and
solving normal equations

Used for computing the contribution of
6 correlated measurements to the Normal
Equations Matrix and Vector

Used for computing contribution of a
priori parameter values to Normal
Equations Matrix and Vector (Subroutine

SOLV1 was formerly part of subroutine
SOLVER)

Prints correlation vector for each arc
and stores primary arc covariance matrix
(entry SOLV2). Stores parameter numbers
and stability types for primary and
secondary arcs (entry SOLV2A) Initializes
normal equations matrix and vector for
multiple drag segments (entry SOLV2B).
(Subroutine SOLV2 was formerly part of
subroutine SOLVER)
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SUBROUTINE

Name

CALLED
BY

PURPOSE OR FUNCTION

SOLV3

SOREAD

SORITE

SPOLCD

SPOOL1

SPOOL2

SPO100

SPO2A3

SOLVER

SOLVER
SOLVER

OLDMAN

SPOLCD

SPOLCD

SPOLCD

MEASUR

Used for deciding when to terminate
iterative solution process (entry
SOLV3). Prints summary associated
with inversion of Normal Equations
Matrix (entry SOLV3A) (Subroutine
SOLV3 was formerly part of subroutine
SOLVER)

Utility routine for reading a sequential
file-

Utility routine for writing a sequential
file .

Scans NAP control cards for consistency.
Generates some arrays and files based
on the control cards. The control cards
are reformatted and output on file
(ICARD) for final processing by INPCRD

Used for computing interpolation tables
for E.T., UTC and UT1l differences (via
call to subroutine TIMARR), and computing
and sorting time intervals for which
integrator output is required. Tables .
and time intervals are temporarily stored
in file 32 (LUB). (formerly part of
subroutine SPOLCD)

Used only for photogrammetric data.
Generates ground point labels for output
on file 25 (IARCOT), and ground point
coordinates output on direct access file
30, (130). (entry SPOOL2) clears array
for ground point coordinates (entry
SPOOL3). (formerly part of subroutine
SPOLCD)

Used for preliminary processing of 100
series cards (entry SPO100). Used for
processing meteorological data used in
refraction formulae (entry SP0610) and
outputs processed data as well as TDRSS
data on file 26 (IPASOT) (entry SPOOL4).
(formerly part of SPOLCD)

Evaluate integrated power series output
for 2nd and 3rd time derivatives of
position
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SUBROUTINE

CALLED
Name BY PURPOSE OR FUNCTION
SPOVEL SOFORT Evaluates power series to obtain
SOFSEC satellite state-vector

STARAN PTSTAR Computes predicted stellar camera
orientation angles (photogrammetric
measurement types 1-6)

STARPA PTSTAR Computes a (3x3) matrix

STARAN (See note 1)

STARPI1 STARAN Computes a (3x3) matrix
(See note 1)

STASER TDRSS Develops power series coefficients for
station vector in inertial space at a
specified time T. The intertial coordinate
system is chosen to be instantaneously
coincident with the "Earth Fixed"
coordinate system at time T

STATEV ENGRAT Obtains state-vector (satellite or
planetary) by evaluating previously
developed power series (*)

SVAREQ SOFORT Evaluates power series to obtain

SOFSEC satellite state transition matrix
SOFRT

TDELAY TDRSS Computes the transmission time for a
radio signal sent from one moving point
to another

TDRSS MEASXX Computes predicted TDRSS measurements
(Measurement types 19-20)

TERRA PTSTAR Computes terrain camera orientation
angles from stellar camera orientation
angles

TERRAS PTSTAR Computes terrain camera orientation
angles such that the camera axes point
due East due North and vertically up

TIMARR SPOOL1 Rearranges input UT1 and Ephemeris
time corrections

UNIFD2 EDIT Reads data tape in "unified" Format
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SUBROUTINE
CALLED
Name BY PURPOSE OR FUNCTION
VISIBI SIMOUT Computes and prints time of satellite
visibility for each station
VXPROD SELECT Used for computing the vector cross
product C = A * B,
WRITER PTCMPA Utility routine for writing on sequential
file (37)
WTSPAX INP60O Utility routine for direct access
INTCOD file 41
INPCRD
XFORM TDRSS Uses '"Inertial 1950.0" power series for
GEOCEG satellite state-vector to compute

satellite state-vector power series
coefficients in same coordinate system
as used by STASER
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NOTES

The computed matrices are of the form of matrices (3.19.13)
through (3.9.16) in "A Photogrammetric and Tracking Network
Analysis Program, Old Dominion Systems, Inc., October 1973,
Contract DAAK 02-72-C-0434".

Routines marked "*'" are used in the integrator. They are
called once per integration step. Routines marked "**" are
used in the integrator. They are called once for each term
(beyond the second) in the power series expansion. For a 16
term power series expansion, which is normal, these routines

are thus called 14 times per integration step.
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Routine

ATMIN

ATMOUT
CATO00
DARITE
DAYHMS
DBREAD
DBURN

DEFALT

DENS
DGRITE
DGRITS
DRAGU
DRAVAR
DREDIT

DUMDUM
EDIT

EDITDT

EIGN
ENBVAR
ENGRAT

APPENDIX G

Photonap Common Blocks

Listing of common blocks used by each subroutine

Common Blocks

IATMOS
ATMOS

TSPARM, SOLFIL

TSPARM
INTCMF, INTCMO, CDEBUG, BURNS

COMSOL, ASPARM, PSPARM, GENCOM, CONMET, ICONST,
EXTCM, EARTH, BURNS, DRSGA, SOLDRG

IATMOS

FOTGNO

FOTGNO

INTCMO, DRSGB

INTCMG, INTCMO, INTCMI

COMSOL, ACINFO, IONUMB, GENCOM, GPCOM, CDEBUG,
ICONST, CWORK, TSPARM

FOTGND, COMSOL, STINFO, GENCOM, EXTCM, COVAR,
CDEBUG, CWORK, IONUMB, ICONST

COMSOL, TSEDIT, ASPARM, ACINFO, PSPARM, GPCOM,
ATMOS, DRSGA

INTCMF, INTCMO, INTCMI, GENCOM

TIMING, INTCMF, INTCMO, INTCMI, POWER, POTREC,
CDEBUG, EXTCM, GENCOM, IONUMB, AJPL, SEROUT
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Routine

Common Blocks

ENROOT
EXPAND
FINALP

FINDOG

FIREAD
FLREAD
PHOTO

GENFIL

GENBUG

GEOCEG
GEOS

GETTAP
GPRSM2
GROUND
HOPRFT
IEMCOL
IEMSET
IEMVAL
INPCRD

INP10O

INP200

INTCMF, INTCMO, INTCMI, AJPL, POWER

GENCOM, TYLE, TSPARM, ASPARF, PSPRMF, CWORK,
IONUMB, STINFO, FOTGND, EARTH, COVAR

MISCOM, INTCMF, INTCMO, INTCMI, POTREC, TSPARM,
CDEBUG, GENCOM

TSPARM

TSPARM

INROOT

COMSOL, TSPARM, TSEDIT, ASPARM, ACINFO, PSPARM,
STINFO, GENCOM, CDEBUG, CWORK, IONUMB, ICONST,
GPCOM, TIMING, INROOT, AJPL, EXTCM, POTREC,
EARTH, BURNS, COVAR, SOLDRG, DRSGA

COMSOL, ASPARM, PSPARM, CWORK, ICONST, GPCOM,
EXTCM, BURNS, SOLDRG

CMEASR, PARSOM, EXTCM, RSUMR, EARTH, PRTLB, PRTEMP
STINFO, IONUMB

CETBL2, INTCMO, CETBL9, REC3

IONUMB, STINFO

FOTO, EARTH

PRTLB, CMEASR, RSUMR, XPNDR

COMSOL

COMSOL

COMSOL

TSPARM, ASPARM, CDEBUG, IONUMB, ICONST, EXTCM,
BURNS, INPCMA

COMSOL, GENCOM, IONUMB, ICONST, GPCOM, EXTCM,
EARTH, ATMOS, INPCMA

COVAR, ACINFO, COMSOL, ICONST, POTREC, EXTCM,
BURNS, INPCMA, DRSGA
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Routine Common Blocks

INP300 STINFO, FCONST, INPCMA

INP600 TSPARM, TSEDIT, ASPARM, ACINFO, PSPARM, COMSOL, !
CWORK, POTREC, GPCOM, INROOT, BURNS, INPCMA, DRSGA

INP700 COMSOL, GENCOM, FCONST, INROOT, INPCMA

INPBUG TSPARM, TSEDIT, ASPARM, ACINFO, PSPARM, STINFO, T
TYLE, COMSOL, ICONST |

INTCOD INROOT, TSPARM, TSEDIT, CWORK, GENCOM, GPCOM, POTREC

INTEG BURNS, DRSGB, CWORK, INTCMF, INTCMO, INTCMI, EXTCM,
CINTEG

INTERP TIMING

INTGA POTREC, TIMING, TSPARM, EXTCM, INTCMF, INTCMO,
INTCMI, POWER

INTP1 TIMING

INTP2 TIMING

INTPRT

INVERT SOLCOM, TSSOLV, SOLFIL

INVPRE SOLFIL, FOTGND, SOLCOM, IONUMB, CWORK, TSSOLV,
TSPARM

INVRTB SOLCOM, TSSOLV, SOLFIL, GENCOM, CWORK, STINFO

INVRTC SOLCOM, TSSOLV, SOLFIL, GENCOM, CWORK, STINFO

INVSYM

INVSYS

JACHIA TSPARM

JULDAY

KEPLER

KICKER SEROUT, CDEBUG, CINTEG, CWORK, CONMET, GENCOM,

EXTCM, IONUMB, PARTY, POTREC, POWER, INTCMF,
INTCMO, INTCMI, CETBL1

KMNCON EARTH, AJPL, CPSYST, KMANl, KMAN2, KMAN3, KMAN4,
KMANI, CINTEG, EXTCM, CWORK

" Sl i PN i s A
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Routine

Common Blocks

KMNEVA
KMNIDE
KMNINI

KMNINV
KMNMP1
KMNMP 2
KMNMP3
KMNOUT
KMNRAN
KMNSIM
KMNSM2
MASCON
MATINV
MATZEV
MATZEX
MAT23

MAT31

MAT32

MAT33

MAT3T3
MAT99

MEASUR

MEASXX

NBDNEX

KMAN1, KMAN2, EXTCM

GENCOM, CWORK, GPSYST, KMAN1l, KMAN2, KMANI,
KMAN4, STINFO, IONUMB

KMAN1

GPSYST, KMAN2, KMAN4, KMANI, GENCOM

GPSYST, KMANI, KMAN4, GENCOM
KMAN2, KMANI, GENCOM
INTCMF, INTCMO, INTCMI, CWORK, POTREC

INTCMO, INTCMI
INTCMF, INTCMO, INTCMI

EXTCM, CMEASR, CONMET, EARTH, RSUMR, GENCOM,
CINTEG, PRTEMP, PRTLB, AJPL

CMEASR, EARTH, RSUMR, XPNDR, GENCOM, CINTEG,
PRTEMP, PRTLB, AJPL

INTCMF, INTCMO, INTCMI
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Routine

Common Blocks

NBDPEX
NEWJPL
NUTION
O4DATE
OCCULT
OFDATE
OLDMAN
PAGE

PFSOLV
PFVARY
PLATEC
POTSOL
POTVAR
PREINT

PREPAR

PRTBG1
PRTBG2
PRTBG3
PRTIAL

PTCMPA
PTINIT

PTSTAR

INTCMF, INTCMO, INTCMI
INTCMF, INTCMO, INTCMI, CETBL1, CETBL2, CETBL4
TIMING

AJPL

INTCMF, INTCMO, INTCMI

AJPL

GENCOM, IONUMB, OVRLAY
GENCOM

EXTCM, POWER

INTCMF, INTCMO, INTCMI, POWER
FOTO

INTCMF, INTCMO, INTCMI, AJPL

CWORK, CINTEG, TSPARM, EARTH, IONUMB, EXTCM, AJPL, .
DRSGB

GENCOM, EARTH, TIMING, CDEBUG, CWORK, CINTEG, BURNS,
DRSGB, PARTY, POWER, EXTCM, IONUMB, OVRLAY, COVAR

CWORK

CWORK, GENCOM, STINFO, IONR

CINTEG, RSUMR, PRTLB

CDEBUG, CMEASR, CONMET, CWORK, CINTEG, BURNS,
DRSGB, PARTY, SDP, AJPL, POTREC, POWER, GENCOM,
EXTCM, IONUMB, STINFO, TSPARM, EARTH, RSUMR,
XPNDR, IONR, OVRLAY, TIMING, FOTGND, PRTLB, PRTEMP
PRTEMP, STINFO, CWORK, GENCOM

STINFO, PRTEMP, CWORK, CINTEG, GENCOM, EXTCM,
TSPARM, EARTH, IONR, RSUMR

PRTEMP, PRTLB, CWORK, CINTEG, AJPL, EXTCM, IONUMB,
EARTH, TIMING, FOTO, FOTGND
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Routine

Common Blocks

RAN601

READE CETBL2, CETBL5, CETBLl, INTCMO, CETBL4, CETBL

READER

RECCOF INTCMF, INTCMO, INTCMI

RECPOT INTCMF, INTCMO, INTCMI, CWORK, POTREC, GENCOM,
AJPL

REDISK TSPARM

REDSKK TSPARM, TSSOLV

REDSKM TSSOLV, SOLCOM, SOLFIL

REFRCT EARTH, GENCOM, CMEASR, CONMET

REPRT?2

REREAD TSPARM

RESID TSPARM, CWORK, STINFO, GENCOM, CDEBUG, IONUMB

ROOTDT TIMING, STINFO, TYLE, GENCOM, CDEBUG, MISCOM,
CWORK, IONUMB, EXTCM. EARTH, ICONST, POTREC
FCONST, CONMET, COVAR, FOTGND, TSPARM, IONR

ROTATE

ROTINT OVRLAY, STINFO, EARTH

ROTPAR EARTH, PRTLB

ROTVFD EARTH, PRTLB

ROT1

RSUM RSUMR, CMEASR, PRTLB

SELECT GPSYST, KMANI, KMAN2

SIGWT

SIMOUT INROOT, CWORK, STINFO, GENCOM, IONUMB

SKRIV

SOFORT GENCOM, CDEBUG, PRTLB, CINTEG, EXTCM, SDP, POTREC,
BURNS, IONUMB, PARCOM, POWER, AJPL, MISCOM
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Routine Common Blocks

SOFRT GENCOM, CDEBUG, CINTEG, EXTCM, IONUMB, FINCOM,
AJPL, COVAR, MISCOM

SOFSEC GENCOM, CDEBUG, PRTLB, CINTEG, EXTCM, SDP, POTREC,
IONUMB, PARCOM, PARTY, AJPL, MISCOM

SOLAWA CWORK

SOLREC

SOLVDT SOLCOM, TSSOLV, SOLFIL

SOLVER SOLCOM, FOTGND, TSPARM, TSSOLV, IONUMB, GENCOM,
CWORK, CDEBUG, SOLFIL

SOLVFU SOLCOM, TSSOLV, IONUMB, GENCOM, CWORK

SOLV1 SOLCOM, TSPARM, TSSOLV, GENCOM, SOLFIL

SOLV2 SOLCOM, TSPARM, TSSOLV, GENCOM, CWORK, COVAR,
SOLFIL

SOLV3 GENCOM, SOLFIL

SOREAD CWORK, SOLFIL

SORITE CWORK, SOLFIL 't

SPODT . SP1COM, SP2COM, SP3COM

SPOLCD CONMET, TIMING, INROOT, FOTGND, TSPARM, STINFO,
GENCOM, IONUMB, ICONST, CWORK, EARTH, IONR,
SP1COM, SP2COM, SP3COM

SPOOL1 TIMING, IONUMB, SP1COM

SPOOL2 FOTGND, GENCOM, IONUMB, SP2COM

SPOVEL

SP0O100 CONMET, POTREC, INROOT, TSPARM, STINFO, TYLE,
GENCOM, IONUMB, CDEBUG, CWORK, SP3COM

SP02A3 PRTLB, PARCOM, RSUMR, EXTCM, CMEASR, EARTH, PRTEMP

STARAN FOTO

STARPA

STARPI i
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Routine

Common Blocks

STASER
STATEV
SVAREQ
TDELAY
TDRSS

TERRA

TERRAS
TIMARR
UNIFD2
VISIBI
VXPROD
WRITER
WTSPAX
XFORM

IONOSF
ION
BETA
READU
DKSICO
DKGK
GK
MAGFIN
SICOJT

EARTH
INTCMO, INTCMI

RSUMR

CMEASR, PRTLB, PARCOM, EXTCM, RSUMR, XPNDR, EARTH,
GENCOM

FOTO

FOTO, PRTLB

TIMING

STINFO, IONUMB

GENCOM, IONUMB, STINFO

TSPARM, TSEDIT, IONUMB
EXTCM

CMEASR, PRTLB, STINFO, IONR, IONTM

CMEASK, IONR

IONR
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G.2

Listing of subroutines utilizing each common block

Common

Block Routines Used in

ACINFO DREDIT, EDITDT, GENFIL, INP200, INP600, INPBUG

AJPL ENGRAT, EXPAND, GENFIL, MEASUR, MEASXX, O4DATE
OFDATE, POTVAR, PREINT, PRTIAL, PTSTAR, RECPOT,
SQFORT, SOFRT, SOFSEC, KMNCON

ASPARF FINALP

ASPARM DEFALT, EDITDT, GENFIL, GENBUG, INPCRD, INP60O,
INPBUG

ATMOS ATMOUT, EDITDT, INP1QO

BURNS DBURN, DEFALT, GENFIL, GENBUG, INPCRD, INP200,
INP600, INTEG, PREPAR, PRTIAL, SOFORT

CDEBUG DBURN, DREDIT, EDIT, ENGRAT, FINDOG, GENFIL,
INPCRD, KICKER, PREPAR, PRTIAL, RESID, ROQTDT,
SOFORT, SOFRT, SOQFSEC, SOLVER, SP0100

CETBL1 KICKER, NEWJPL, READE

CETBL2 GETTAP, NEWJPL, READE

CETBL4 NEWJPL, READE

CETBLS READE

CETBLY GETTAP, READE

CINTEG INTEG, KICKER, MEASUR, MEASXX, PREINT, PREPAR,
PRTBG3, PRTIAL, PTINIT, PTSTAR, SOFORT, SOFRT,
SOFSEC, KMNCON

CMEASR GEOCEG, HOPRFT, MEASUR, MEASXX, PRTIAL, REFRCT,
RSUM, SP0O2A3, TDRSS, IONOSF, ION

COMSOL DEFALT, DREDIT, EDIT, EDITDT, GENFIL, GENBUG,
IEMCOL, IEMSET, IEMVAL, INP100, INP200, INP60O0,
INP700, INPBUG

CONMET DEFALT, KICKER, MEASUR, PARTIAL, REFRCT, ROOTDT,
SPOLCD, SP0O100

COVAR EDIT, FINALP, GENFIL, INP200, PREPAR, ROOTDT,

SOFRT, SOLV2

~124-



R P S

s,

> iy T

e el

Common
Block

Routines Used in

CWORK

DRSGA
DRSGB
EARTH

EXTCM

FCONST
FINCOM
FOTGND

FOTO
GENCOM

GPCOM

GPSYST
IATMOS

ICONST

SOLVFU, SPO100, DREDIT, EDIT, FINALP, GENFIL,
GENBUG, INP600, INTCOD, INTEG, INVPRE, INVRTB,
INVRTC, KICKER, MASCON, PREINT, PREPAR, PRTBGI1,
PRTBG2, PRTIAL, PTCMPA, PTINIT, PTSTAR, RECPOT,
RESID, ROOTDT, SIMOUT, SOLVER, SOREAD, SOLFIL,
SPOLCD, KMNCON, KMNINI, SOLAWA, SOLV2

DEFALT, EDITDT, INP200, INP600, GENFIL
INTEG, PREINT, PREPAR, PRTIAL, DRAGU

DEFALT, FINALP, GENFIL, GEOCEG, GROUND, INP100,
MEASUR, MEASXX, PREINT, PREPAR, PRTIAL, PTINIT,
PTSTAR, REFRCT, ROOTDT, ROTINT, ROTPAR, ROTVFD,
SPOLCD, SPO2A3, STASER, TDRSS, KMNCON

DEFALT, EDIT, ENGRAT, GENFIL, GENBUG, GEOCEG,
INPCRD, INP100, INP200, INTEG, INTGA, KICKER,
MEASUR, PFSOLV, PREINT, PREPAR, PRTIAL, PTINIT,
PTSTAR, ROOTDT, SOFORT, SOFRT, SOFSEC, SP02A3,
TDRSS, XFORM, KMNCON, KMNEVA

INP300, INP700, ROOTDT
SOFRT

DGRITE, DGRITS, EDIT, FINALP, INVPRE, PRTIAL,
PTSTAR, ROOTDT, SOLVER, SPOLCD, SPOOL2

GROUND, PLATEC, PTSTAR, STARAN, TERRA, TERRAS

SOLV3, SOLVFU, SPOOL2, SPO100, VISIBI, KMNINI,
KMNOUT, KMNSIM, KMNSM2, SOLV1, SOLV2, DEFALT,
DREDIT, EDIT, ENBVAR, ENGRAT, FINALP, FINDOG,
GENFIL, INP100, INP700, INTCOD, INVRTB, INVRTC,
KICKER, MEASUR, MEASXX, OLDMAN, PAGE, PREPAR,
PRTBG2, PRTIAL, PTCMPA, PTINIT, RECPOT, REFRCT,
RESID, ROOTDT, SIMOUT, SOFORT, SOFRT, SOFSEC,
SOLVER, SPOLCD, TDRSS

DREDIT, EDITDT, GENFIL, GENBUG, INP100, INP60O0,
INTCOD

KMNCON, KMNINI, KMNOUT, KMNSIM, SELECT
ATMIN, DENS

DEFALT, DREDIT, EDIT, GENFIL, GENBUG, INPCRD,
INP100, INP20J, INPBUG, ROOTDT, SPOLCD
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INPCMA
INROOT

INTCMF

INTCMI

INTCMO

IONR

IONTM
IONUMB

KMANI
KMAN1
KMAN2
KMAN3
KMAN4
MISCOM
OVRLAY
PARCOM
PARTY

INPCRD, INP100, INP200, INP300, INP600, INP700

PHOTO, GENFIL, INP600, INP700, INTCOD, SIMOUT,
SPOLCD, SP0100

DBURN, DRAVAR, ENBVAR, ENGRAT, EXPAND, FINDOG,
INTEG, INTGA, KICKER, MASCON, MATZEX, NBDNEX,
NBDPEX, NEWJPL, OCCULT, PFVARY, POTVAR, RECCOF,
RECPOT

DRAVAR, ENBVAR, ENGRAT, EXPAND, FINDOG, INTEG,
INTGA, KICKER, MASCON, MATZEV, MATZEX, NBDNEX,
NBDPEX, NEWJPL, OCCULT, PFVARY, POTVAR, RECCOF,
RECPOT, STATEV

DBURN, DRAVAR, ENBVAR, ENGRAT, EXPAND, FINDOG,
GETTAP, INTEG, INTGA, KICKER, MASCON, MATZEV,
MATZEX, NBDNEX, NBDPEX, NEWJPL, OCCULT, PFVARY,
POTVAR, READE, RECCOF, RECPOT, STATEV, DRAGU

PRTBG2, PRTIAL, PTINIT, ROOTDT, SPOLCD, IONOSF,
ION, READU

IONOSF

KMNINI, SOLVFU, SPOOL1, SPOOL2, SP0100, DREDIT,
EDIT, ENGRAT, FINALP, GENFIL, GEOS, GPRSM2,

INPCRD, INP100, INVPRE, KICKER, OLDMAN, PREINT,
PREPAR, PRTIAL, PTSTAR, RESID, ROOTDT, SIMOUT,
SOFORT, SOFRT, SOFSEC, SOLVER, SPOLCD, UNIFD2,

VISIBI, WTSPAX

KMNCON, KMNINI, KMNOUT, KMNSIM, KMNSM2, SELECT
KMNCON, KMNEVA, KMNINI, KMNINV
KMNCON, KMNEVA, KMNINI, KMNOUT, KMNSM2, SELECT
KMNCON
KMNCON, KMNINI, KMNOUT, KMNSIM
FINDOG, ROOTDT, SOFORT, SOFRT, SOFSEC
OLDMAN, PREPAR, PRTIAL, ROTINT |
GEOCEG, SOFORT, SOFSEC, SPO2A3, TDRSS
KICKER, PREPAR, PRTIAL, SOFSEC
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POTREC

POWER

PRTEMP

PRTLB

PSPARM
PSPRMF
REC3
RSUMR

SDp
SEROUT
SOLCOM

SOLDRG
SOLFIL

SP1COM
SP2COM
SP3COM
STINFO

TIMING

ENGRAT, FINDOG, GENFIL, INP200, INP60G, INTCOD,
INTGA, KICKER, MASCON, PRTIAL, RECPOT, ROOTDT,
SOFORT, SOFSEC, SPO100

ENGRAT, EXPAND, INTGA, KICKER, PFSOLV, PFVARY,
PREPAR, PRTIAL, SOFORT

GEOCEG, MEASUR, MEASXX, PRTIAL, PTCMPA, PTINIT,
FTSTAR, SPO2A3

GEOCEG, HOPRFT, MEASUR, MEASXX, PRTBG3, PRTIAL,
PTSTAR, ROUTPAR, ROTVFD, RSUM, SOFORT, SOFSEC,
SP02A3, TDRSS, TERRAS, IONOSF

DEFALT, EDITDT, GENFIL, GENBUG, INP600, INPBUG
FINALP

GETTAP

GEOCEG, HOPRFT, MEASUR, MEASXX, PRTBG3, PRTIAL,
RSUM, SPO2A3, TDELAY, TDRSS, PTINIT

PRTIAL, SOFORT, SOFSEC
ENGRAT, KICKER

INVERT, INVPRE, INVRTB, INVRTC, REDSKM, SOLVDT,
SOLVER, SOLV1, SOLV2, SOLVFU

DEFALT, GENFIL, GENBUG

DARITE, INVERT, INVPRE, INVRTB, INVRTC, REDSKM,
SOLVDT, SOLVER, SOREAD, SORITE, SOLV1l, SOLV2,
SOLV3

SPOLCD, SPODT, SPOOL1
SPOLCD, SPODT, SPOOL2
SPOLCD, SPODT, SPO100

EDIT, FINALP, GENFIL, GEOS, GPRSM2, INP300, INPBUG,
INVRTB, INVRTC, PRTBG2, PRTIAL, PTCMPA, PTINIT,
RESID, ROOTDT, ROTINT, SIMOUT, SPOLCD, UNIFD2,
VISIBI, IONOSF, KMNINI, SP0100 :

ENGRAT, GENFIL, INTERP, INTGA, INTP1l, INTP2,

NUTION, PREPAR, PRTIAL, PTSTAR, ROOTDT, SPOLCD,
TIMARR, SPOOL1
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TSEDIT EDITDT, GENFIL, INP600, INPBUG, INTCOD, WTSPAX

TSPARM DARITE, DBREAD, DREDIT, FINALP, FINDOG, FIREAD,
FLREAD, GENFIL, INPCRD, INP600, INPBUG, INTCOD,
INTGA, INVPRE, PREINT, PRTIAL, PTINIT, REDISK,
REDSKK, REREAD, RESID, ROOTDT, SOLVER, SPOLCD,
WISPAX, JACHIA, SOLV1, SOLV2, SP0O100

TSSOLV INVERT, INVPRE, INVRTB, INVRTC, REDSKK, REDSKM,
SOLVDT, SOLVER, SOLV1l, SOLV2, SOLVFU

TYLE FINALP, INPBUG, ROOTDT, SPO100

XPNDR HOPRFT, MEASXX, PRTIAL, TDRSS
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